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Abstract
Bus and register management is one of the crucial aspects of ASIC, SoC or FPGA based
designs. The problems related to it are well known, and multiple tools or approaches
are already trying to solve or mitigate them. However, all available solutions share the
same register-centric paradigm. A user defines registers and then manually lays out
the data into the registers. Such an approach has its limitations. A description does
not contain information on data spanning multiple registers or data forming a broader
context, procedure arguments, for example. It also does not contain information on the
data purpose. As a result, the generated access code is low-level and usually needs an
extra wrapper, which leaves room for potential human mistakes. For instance, it is the
user’s responsibility to guarantee proper access order to registers or to provide an atomic
change of data wider than single register width.

The thesis proposes a new approach, the functionality-centric approach. In the functionality-
centric approach user defines the data with the type of its functionality. The registers
and bus hierarchy are later implicitly inferred. By defining the functionality of the data
placed in the registers, it is possible to generate more access code, increase code robust-
ness, improve system design readability, and shorten the implementation process.

The thesis includes the specification of the new domain-specific language (Functional Bus
Description Language), the reasoning for some of the design decisions as well as some of
the compiler implementation details.

Keywords: bus interface, code maintenance, computer languages, control interface, de-
sign automation, design verification, documentation generation, electronic design automa-
tion, EDA, electronic systems, Functional Bus Description Language, FBDL, hardware
design, hardware description language, HDL, hierarchical register description, memory,
programming, register addressing, register synthesis, software generation, system man-
agement
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Streszczenie
Zarządzanie magistralą oraz rejestrami jest jednym z kluczowych aspektów podczas pro-
jektowania układów ASIC, SoC lub systemów wykorzystujących układy FPGA. Problemy
z tym związane są dobrze znane. Istnieje wiele narzędzi oraz sposobów postępowania,
które starają się je rozwiązywać lub niwelować ich wpływ. Wszystkie dostępne rozwiąza-
nia cechuje jednak te same podejście do zagadnienia, są one zorientowane na rejestry.
Użytkownik pierw definiuje rejestr, a dopiero w kolejnym kroku ręcznie rozmieszcza w
nim dane. Takie podejście zawiera pewne ograniczenia. Opis rejestrów nie zawiera in-
formacji na temat danych znajdujących się w więcej niż jednym rejestrze, czy na temat
danych będących częścią jakiegoś szerszego kontekstu, jak np. argumenty procedur. Opis
nie zawiera również informacji na temat funkcjonalności jakie poszczególne dane dostar-
czają. W rezultacie automatycznie wygenerowany kod jest niskopoziomowy i wymaga
ręcznej implementacji kodu opakowującego. To z kolei przekłada się na pozostawienie
miejsca na potencjalne ludzkie pomyłki. Przykładowo, to użytkownik odpowiedzialny
jest za zapewnienie poprawnej kolejności dostępów do rejestrów, czy za zapewnienie ato-
mowości zmian wartości danych, których szerokość przekracza szerokość pojedynczego
rejestru.

W rozprawie zaprezentowano nowe podejście zorientowane na funkcjonalność danych.
W podejściu tym użytkownik definiuje dane wraz z ich typem funkcjonalności. Na ich
podstawie są następnie automatycznie generowane rejestry wraz z hierarchią magistrali.
Definiowanie funkcjonalności danych pozwala na zwiększenie ilości kodu dostępowego gen-
erowanego automatycznie, i zmniejszenie ilości kodu pisanego ręcznie. To z kolei zwiększa
odporność kodu na błędy, poprawia czytelność projektu i skraca czas spędzony na imple-
mentacji.

Praca obejmuje specyfikację jezyka specyficznego dla danej domeny (Język Opisu Funkcjon-
alnych Magistral), uzasadnienie niektórych decyzji projektowych oraz omówienie niek-
tórych ze szczegołów implementacji kompilatora.

Słowa kluczowe: adresowanie rejestrów, automatyzacja projektowania, magistrala, gen-
eracja oprogramowania, generacja dokumentacji, hierarchiczny opis rejestrów, interfejs
sterowania, język opisu sprzętu, języki programowania, magistrala, programowanie, pro-
jektowanie sprzętu, synteza rejestrów, systemy elektroniczne, utrzymanie kodu, wery-
fikacja projektu, zarządzanie systemem
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Preface

Context and motivation of the dissertation
Designing, implementing, and integrating FPGA-based designs with a software stack run-
ning on a traditional CPU or with a firmware stack running on an MCU poses a relatively
complex technological, organizational, and methodical task. DAQ systems for HEP exper-
iments, among military, medical, and digital entertainment systems, are good examples
of areas where such tasks are omnipresent and inevitable.

The author of the dissertation, for four years, has been taking part in the design and
implementation process of the gateware, firmware, and software for the DAQ system
for the CBM [1] experiment that has been prepared at the GSI Helmholtzzentrum für
Schwerionenforschung in Darmstadt [2].

Design environments for DAQ systems in HEP experiments are very peculiar. The whole
design and implementation take relatively long, from a few to even a dozen or so years.
The engineering teams are international. The educational background is varied. There
are physicists, electronics engineers, computer science engineers, system administrators,
etc. The spectrum of the age of the members is vast, ranging from first-year Ph.D. stu-
dents to halftime retired workers. Most members participate in multiple projects or have
academic duties, so the time they devote to a particular task is limited. During the devel-
opment phase, there is also a rotation of the employees. As a whole system is extensive
and complex and must work reliably, it is natural that the preliminary prototypes vary
significantly from the final solutions. All of this leads to implementing the same or similar
functionalities multiple times. For example, a change of programming language after the
prototyping stage forces such reimplementation.

During the first two years of the studies, the author explored how to make such complex
and multidimensional projects more manageable and verifiable. Trying to incorporate
some industrial methodologies, such as UVM framework or formal verification, simply
failed. There were at least several reasons for this. To name a few:

• Lack of free, open source tools or limited functionality of such tools. Paid commer-
cial tools have expensive licenses.

• Too steep learning curve and lack of learning resources. The EDA tools appear to
be inadequate for engineers who do not use them every day for eight hours. Instead
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of focusing on the design and fundamental problems, one spends time learning how
to use the EDA tools, and each of them has distinct user interface.

Throughout the work, it turned out that in such a diverse environment, there is another
policy suited much better. Instead of incorporating cumbersome industrial standards
that need expensive licenses, one can automatically generate as much gateware, firmware,
and software as possible. As long as the description format, based upon which parts of
the system are generated, is easily readable by a human, the work is moving forward
surprisingly fast.

Based on this observation, the author has been looking for a way to enhance and extend
existing generic methods and tools commonly used for gateware, firmware, and software
code generation. During the work on the AGWB [3], and after using it for a few months,
the author noticed that a relatively lot of code was still repeatedly implemented manually.
That manually implemented code had some common characteristics and could be easily
automatically generated. The only thing missing to generate it was the information on the
functionality that must be served by a given data. That required shifting the accent from
the register (register-centric approach) to the data, or more precisely to the functionality
of the data (functionality-centric approach). After analysing state-of-the-art tools and
approaches, the author concluded that there is actually no solution based on the data
functionality paradigm. The author has decided that the idea is worth trying, and the
FBDL realizes this idea.

Structure of the thesis
The thesis consists of 9 chapters and 4 additional appendices. Appendix D is the specifi-
cation of the newly defined Functional Bus Description Language. It is advised to at least
skim it before reading the dissertation and later come back to it while reading the chapter
5. The specification also includes definitions of some terms used in the thesis.

Chapter 1 introduces the bus and register management problem. It provides a simplified
example that is used to present some of the subproblems and analyze how they are
solved in the register-centric (typical) approach and functionality-centric (newly proposed)
approach.

Chapter 2 briefly discusses on-chip interconnect architectures. It uses AMBA AXI and
Wishbone buses to present two distinct bus control logics. It also discusses the NoC
technology, a natural progression of traditional on-chip buses.

Chapter 3 is the prior art analysis. It includes only solutions following the register-centric
paradigm. The author proposes a shift of paradigm to the functionality, and no solution
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following this approach has been found.

Chapter 4 contains the definition of the thesis. Then, the aim and scope of the dissertation
is described.

Chapter 5 serves as an extension to the FBDL specification. It discusses all supported
functionalities, and unlike the specification, it focuses on answering the „why” questions
instead of the „how” questions. It is recommended to read subsections of this chapter
concurrently with the corresponding subsections of the FBDL specification (first specifi-
cation, then dissertation) or to read the whole specification first.

Chapter 6 discusses the most common features present in the register-centric tools but
absent in the FBDL. The focus is on reasoning why they are absent at the current stage
of the language.

Chapter 7 describes the implementation of the compiler for the FBDL. As the compre-
hensive description would be relatively long and would include aspects irrelevant from the
thesis point of view, the chapter describes only the overall structure and focuses on some
general details that probably any FBDL compliant compiler will have to face.

Chapter 8 provides information on the project in which FBDL has been used. However,
due to the proprietary nature of the project, no internal details are revealed.

Chapter 9 summarizes the advantages of describing a system bus using the functionality-
centric approach instead of the register-centric.

The thesis has numerous code snippets and listings used as examples to illustrate problems
better or explain solutions. The VHDL language has been chosen for the gateware, and
the Python language has been chosen for the software. However, all presented concepts
are programming language agnostic, so any language could be selected, and the reasoning
would remain valid.
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1 Introduction
Most ASIC, FPGA, or SoC designs, for sure the more complex ones, have some kind of
internal bus. Such a bus is often referred to as a „system bus”, „local bus”, „on-chip bus”,
„interconnect bus” or „on-chip interconnect bus” (the last one is the most formal and
probably the most appropriate). The main role of the bus is to provide an organized and
structured manner for connecting independent modules within the chip. It also serves
as some kind of gateway to access the internals of the gateware or hardware design from
the firmware or software stack. Such access includes writing control signals, reading
status signals, bi-directional data streaming, procedure triggering, interrupt signaling,
etc. Figure 1.1 presents an example simplified structure of some SoC. Master modules
are red, slave modules are yellow, and bus fabric components are blue.

Figure 1.1: Example internal structure of some SoC design with bus.

A bus usually consists of an address bus, a data bus, and a control bus. The most popular
on-chip buses used in FPGA designs are probably AXI [4] (which is part of the AMBA)
and Wishbone [5].
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If there is a bus in a design, then the bus needs to be managed. The bus management
consists of the following logical elements:

1. Address space management. This includes:

a) Assigning address ranges to the modules.

b) Aligning address ranges according to the user’s policy.

2. Bus fabric management. This includes:

a) Description of the modules hierarchy.

b) Generation of the bus fabric components (such as crossbars) according to the
user-provided description.

3. Registers management. This includes:

a) Ordering registers within the modules.

b) Splitting long signals between multiple registers.

c) Grouping short signals into a single register.

d) Attributing additional functions to the registers, such as associated strobe or
acknowledgment signals.

All of the bus management tasks can be done manually, in a semi-automated way, or in a
fully automated way. The greater the automation, the less room for potential engineers’
mistakes and the greater pace of the project development.

Managing the bus in a complex system is a well-known and non-trivial problem, especially
in hardware-software co-design projects [6, 7, 8, 9]. Even though various approaches and
implementations have already been proposed, there is still no solution that would make
the bus management process fully automated. All available tools and standards either
only support some of the logical elements of bus management or require users to do the
register management manually. The register management is the most time-consuming
and error-prone part of the bus management.

1.1 Example problem
The following section introduces an example to ease the reasoning. The example is also
used to present the typical register-centric approach for managing registers and the new
functionality-centric approach proposed in the thesis. It presents some, but not all, prob-
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lems encountered in a register-centric approach that are eliminated in the newly proposed
approach.

Let’s assume there is a module implemented in the FPGA logic called the Supervisor.
The Supervisor is capable of scheduling work to be done by some Worker modules. The
Supervisor has its own 48 bits internal counter that can be reset. The Supervisor can
pass data to Worker modules at programmed counter value. There are 24 workers, and
the data passed to them is two 12 bits long vectors. The data might be passed to any
set of workers. For simplicity, let’s assume that the data passed to all the workers is
the same. The Supervisor also has two additional status bits, informing whether it is
currently programmed (the data is scheduled to be processed) and whether it has been
programmed in the past. Programming in the past means that the Supervisor will not
fire data passing to the Workers before counter overflow. The Supervisor can also be
unprogrammed. Listing 1 shows the VHDL interface of the example Supervisor. Signals
connected to the particular ports have analogous names without the _i, _o suffixes.

The example Supervisor must be controlled by the software running on a CPU. Listing 2
shows an example Python interface of the Supervisor.

Inside an FPGA, there is a 32 bits wide bus (this is the width of the data; the width of
the address is irrelevant in this consideration). What bus it is and how it can be accessed
from the software is irrelevant to the analysis. A proper interface for accessing the bus is
provided via the registers_handle parameter.

1.2 Register-centric approach
In the register-centric approach, one has to take the following mandatory steps:

a) Identify control signals. In the case of the Supervisor, these are: reset_counter,
program, unprogram, programmed_counter_value, worker_data0,

worker_data1, workers_mask.

b) Identify status signals. In the case of the Supervisor, these are: counter, programmed
, programmed_in_past, workers_ready.

c) Identify which control signals form a broader context. For instance, worker_data0
does not make any sense when it is used alone. It is solely one of the procedure’s
parameters allowing for passing data to the workers. On the other hand, unprogram
makes sense on its own.

d) Identify which status signals form a broader context. There is no such case in the
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entity Supervisor is
generic (WORKER_COUNT : positive := 24);
port (

clk_i : in std_logic;

-- Supervisor control interface
counter_o : out std_logic_vector(47 downto 0);
reset_counter_i : in std_logic;
-- Program procedure
program_i : in std_logic;
programmed_counter_value_i : in std_logic_vector(47 downto 0);
worker_data0_i : in std_logic_vector(11 downto 0);
worker_data1_i : in std_logic_vector(11 downto 0);
-- Workers mask is set independently
workers_mask_i : in std_logic_vector(WORKER_COUNT-1 downto 0);
-- Unprogram procedure
unprogram_i : in std_logic;
-- Status bits
programmed_o : out std_logic;
programmed_in_past_o : out std_logic;
workers_ready_o : out std_logic_vector(WORKER_COUNT-1 downto 0);

-- Interface to Workers
workers_ready_i : in std_logic_vector(WORKER_COUNT-1 downto 0);
data_valid_o : out std_logic_vector(WORKER_COUNT-1 downto 0);
worker_data0_o : out std_logic_vector(11 downto 0);
worker_data1_o : out std_logic_vector(11 downto 0)

);
end entity;

Listing 1: Example Supervisor VHDL module interface.

example Supervisor.

e) Calculate the number of bits needed for control and status signals. The example
Supervisor needs 82 status bits (counter, programmed, programmed_in_past,
workers_ready) and 96 control bits (programmed_counter_value, worker_data0
, worker_data1, workers_mask). Whether reset_counter, program, unprogram
should be included is yet another question. As these are single-bit signals solely
triggering some action, they can be implemented as registers or fields requiring ex-
plicit set and clear, or as register-associated signals triggered during register write.
The second option is usually better as it provides lower latency. However, if the
first option is chosen, then there are 99 control bits.

f) Identify control and status signals needing special handling. For example, in the
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class Supervisor():
def __init__(self, registers_handle):

pass
def read_counter(self):

pass
def reset_counter(self):

pass
def read_status_bits(self):

pass
def program(self, counter_value, worker_data0, worker_data1):

pass
def unprogram(self):

pass
def read_workers_ready(self):

pass
def set_workers(self, workers):

pass

Listing 2: Example Supervisor Python software interface.

case of the Supervisor there is 48 bits long counter value. As the bus width is 32
bits, one needs to provide some mechanism for an atomic read of the counter value
to keep the value integrity while reading the counter.

g) Manually decide the register layout. This step involves answering a lot of irrelevant
questions. For example, how many registers are needed? Should lower bits of the
counter value be placed in the first or the second status register? Should reading
the first or the second register of the counter value trigger the atomic read? Should
programmed and programmed_in_past be placed in separate registers or in one
of the counter value registers to save some address space size? What should be
the order of control signals within the control registers? The number of possible
implementations is infinite.

Quite a lot of work, even for such a simple module. Moreover, the whole register struc-
ture must also be reflected in the software. Figure 1.2 shows a conceptual model of layers
in a register-centric approach. The communication interface and interconnect layers are
irrelevant in terms of the address space and registers management. Register-centric solu-
tions focus on the module registers and bus fabric layers. They allow describing one or
more of these layers and can auto-generate appropriate gateware, firmware, and software.
However, these solutions ignore that some signals might need special handling or be a
part of some broader context. For instance, a user has to implement atomic reads or
writes himself. The same applies to the software responsible for triggering procedures
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Figure 1.2: Conceptual stack of layers in the register-centric approach.

implemented in the gateware, consisting of multiple control registers. Such an approach
is error-prone and leads to duplication of information. For example, the information that
some signal needs atomic read is manually implemented in two places, in the firmware
source code, and in the software source code.

Working manually on the register layout is also fragile to changes. In the example Super-
visor module, there are 96 bits needed for the control signals if reset_counter, program
, unprogram are implemented as strobe signals associated with given control registers.
This is exactly three registers on a 32 bits wide bus. However, should reset_counter
, program, unprogram be associated with registers storing some data, or maybe with
virtual registers (registers with addresses but not storing any data)? What happens if
more workers have to be added? The user has to manually add more control registers
and adjust the firmware and software accordingly. Yet another question arises. Should
the whole, longer workers_mask be moved to the new third control register, or maybe
just the new extra bits?

Listing 3 shows an example implementation of the software handling Supervisor module in
the case of a register-centric approach. It all has to be coded manually. What is worse, in
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case of any register changes it also has to be adjusted manually. This is because available
solutions are register-centric. They treat registers as a goal, not as a path to an actual
goal, which is always the functionality of the data.

The register-centric approach gives much freedom and is highly flexible. On the other
hand, it does not look at the registers from the broader context and is unaware of the se-
mantics of the data stored in them. This implies micro-management of registers, generates
a lot of irrelevant questions, and is relatively fragile to changes.

Listing 4 presents an example SystemRDL description for example Supervisor. System-
RDL is the only formally defined register-centric format. If there was a need to increase
the number of workers above the bus width, then the description would need a relatively
lot of adjustments. The register layout is described manually, so the WORKER_COUNT macro
can no longer be used. Listing 5 presents the file difference that would have to be applied
in such a case.

1.3 Functionality-centric approach
The thesis proposes a shift of paradigm leading to a different approach. It looks at the
design and modules from the functionality point of view. It is the functionality of the
data that is in the center. An engineer always thinks about the functionality a given
module should serve. The whole register layout is automatically generated based on the
declarative description of the provided functionalities. Figure 1.3 shows a conceptual
model of layers in the functionality-centric approach. There is an extra data functionality
layer compared to the register-centric approach. This is the core layer in this model.
The module register layers are automatically generated based on the data functionality
layer.

Looking at data from the functionality point of view allows for avoiding register micro-
management. Having functionality embedded into the register data notation also helps
to prevent information duplication. For example, atomic accesses or procedure calls can
be easily automatically generated for both the requester and the provider. This removes
a whole surface of potential human mistakes.

Listing 6 presents FBDL description for example Supervisor, and appendix A presents
registerification results. If there was a need to change the number of workers, then it
would be enough to change the WORKER_COUNT constant value, even if the new number
was greater than the bus width. Listing 7 presents the file difference that would have to
be applied in such a case. As the registerification process is carried out automatically by
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Figure 1.3: Conceptual stack of layers in the functionality-centric approach.

the compiler also the whole register layout is automatically adjusted. There is no need
to adapt gateware, firmware or software code manually. As FBDL promotes safety by
default, there is also no need to declare Counter status to be atomic explicitly. Any data
wider than bus width has atomic access unless the user explicitly resigns from it.
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class Supervisor:
def __init__(self, registers_handle):

self.registers_handle = registers_handle

def read_counter(self):
""" To keep counter integrity and perform atomic read, the

counter register 0 must be read as the first one. """
counter = self.registers_handle.Counter0.read()
counter |= self.registers_handle.Counter1.read() << 32
return counter

def reset_counter(self):
self.registers_handle.Reset_Counter.write(0)

def read_status_bits(self):
""" Returns tuple (programmed, programmed_in_past). """
status = self.registers_handle.Status.read()
return status & 1, status & 2

def program(self, counter_value, worker_data0, worker_data1):
""" Program0 register has to be written as the last one, as it has

strobe signal associated with it, which serves as the arm signal. """
self.registers_handle.Program2.write((worker_data1 << 12) | worker_data0)
self.registers_handle.Program1.write(counter_value >> 32)
self.registers_handle.Program0.write(counter_value & 0xFFFFFFFF)

def unprogram(self):
self.registers_handle.Unprogram.write(0)

def read_workers_ready(self):
return self.registers_handle.Workers_Ready.read()

def set_workers(self, workers):
""" Enable given workers. Workers argument can be a worker number

or a list of workers numbers. """
if type(workers) == int:

workers = [workers]
mask = 0
for w in workers:

mask |= 1 << w
self.registers_handle.Workers_Mask.write(mask)

Listing 3: Example Supervisor software interface implementation in the case of a register-
centric approach.
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addrmap Supervisor {
name = "Supervisor";
default regwidth = 32;

`define WORKER_COUNT 24

reg empty_strobe_reg_t {
field {sw = w; hw = na; swacc;} dummy;

};

// Counter0 has to be read as the first one to
// keep counter value integrity.
reg { field { sw = r; hw = w; } data; } Counter0;
reg {

regwidth = 16;
field {sw = r; hw = w;} data[16];

} Counter1;
empty_strobe_reg_t Reset_Counter;

reg {
field {fieldwidth = `WORKER_COUNT; sw = w; hw = r;} mask;

} Workers_Mask;
// Program0 must be written as the last one,
// as the write triggers Program procedure.
reg {

field {sw = w; hw = r; swacc;} counter_value0;
} Program0;
reg {

regwidth = 16;
field {sw = w; hw = r;} counter_value1[16];

} Program1;
reg {

field {sw = w; hw = r;} worker_data0[12];
field {sw = w; hw = r;} worker_data1[12];

} Program2;
empty_strobe_reg_t Unprogram;

reg {
field {fieldwidth = `WORKER_COUNT; sw = r; hw = w;} mask;

} Workers_Ready;
reg {

field {fieldwidth = 1; sw = r; hw = w;} programmed;
field {fieldwidth = 1; sw = r; hw = w;} programmed_in_past;

} Status;
};

Listing 4: Example Supervisor SystemRDL description.
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5,6d4
< `define WORKER_COUNT 24
<
19,20c17 ,21
< field {fieldwidth = `WORKER_COUNT; sw = w; hw = r;} mask;
< } Workers_Mask;
---
> field {sw = w; hw = r;} mask;
> } Workers_Mask0;
> reg {
> field {fieldwidth = 1; sw = w; hw = r;} mask;
> } Workers_Mask1;
37,38c38 ,42
< field {fieldwidth = `WORKER_COUNT; sw = r; hw = w;} mask;
< } Workers_Ready;
---
> field {sw = r; hw = w;} mask;
> } Workers_Ready0;
> reg {
> field {fieldwidth = 1; sw = r; hw = w;} mask;
> } Workers_Ready1;

Listing 5: Example Supervisor SystemRDL description change for workers count increase
above the bus width.
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Main bus
Supervisor block

const WORKER_COUNT = 24

Counter status; width = 48
Reset_Counter proc

Workers_Mask mask; width = WORKER_COUNT
Program proc

counter_value param; width = 48
worker_data [2]param; width = 12

Unprogram proc

Workers_Ready status; width = WORKER_COUNT
type status_t status; width = 1; groups = "status"
programmed status_t
programmed_in_past status_t

Listing 6: Example Supervisor FBDL description.

3c3
< const WORKER_COUNT = 24
---
> const WORKER_COUNT = 33

Listing 7: Example Supervisor FBDL description change for workers count increase above
the bus width.
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2 On-chip interconnect architectures
Probably every practical computing system ever created consists of independent compo-
nents (there is at least some processing unit and a memory). In order to achieve synergy
and serve desired functionality, these components must communicate with each other
using a set of organized rules (communication protocols or standards). This network of
connections is often referred to as system interconnect. The very first interconnect ar-
chitectures were also called buses. The term „bus” originates from the computer, whose
history can be traced back to 1946 [10]. This term is still in common use, although
nowadays, bus protocols differ significantly from their ancestors. A bus, in general, is
a common pathway through which information flows from one computer component to
another. In the early days, computer components were relatively big, and all buses were
physically made of copper wires, or later as traces on the printed circuit boards. Initially,
those buses served four functions:

1. Data sharing - the primary purpose of every bus. Data processing is the core
concept of every computing system. It would not be achievable without data transfer
between system components.

2. Addressing - a bus had address lines. This allowed data to be sent to a particular
system component to a specific memory location.

3. Clock distribution - a bus provided a system clock signal to synchronize the periph-
erals attached to it or even to clock the peripheral itself.

4. Power supplying - a bus supplied power to various peripherals connected to it.

The most popular computer expansion buses include ISA [11], EISA [12], MCA [13],
VESA [14], SCSI [15], USB [16], and PCI/PCIe [17]. Most of them are not used any-
more as they have been replaced with the USB and PCIe. With the advancement of
technology, especially integrated circuits technology, it was possible to shrink compo-
nents of computing systems to the sizes allowing placing multiple of them (or even the
whole system) on a single chip. There was still a need to connect system components
to enable communication between them. However, traditional microcomputer buses were
fundamentally handicapped for use as a SoC interconneciton. This is because they were
designed to drive long signal traces and connector system which are highly inductive and
capacitive. In this regard, SoC is much simpler and faster. Furthermore, the SoC solu-
tions have a rich set of interconnection resources. These do not exist in microcomputer
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buses because they are limited by chips packaging and mechanical connectors. As the
existing buses were not optimal for implementation on chips, the interconnect architec-
tures started to be grouped into two classes, the off-chip interconnect architectures, and
the on-chip interconnect architectures. The on-chip buses serve the same functions as
the off-chip buses except the last one, the power supplying [18]. In the case of SoCs, the
power is usually supplied separately via the chip backbone. The clock is also not always
distributed, as a bus can be asynchronous [19], but this might also be valid in the case of
off-chip buses. Examples of prevailing on-chip buses include ARM AMBA AXI [4], IBM
CoreConnect [20], Intel Avalon [21], STMicroelectronics STBus [22], Opencores Wishbone
[5], MARBLE (asynchronous) [23].

The following two sections briefly describe two on-chip bus standards, the AXI and the
Wishbone. They have been chosen because:

1. they are omnipresent and popular,

2. they have different control logic.

The descriptions are brief because Wishbone revision B4 specification has 128 pages and
AMBA AXI specification is 273 pages long, and the subsections’ purpose is solely to
introduce example bus logic.

2.1 AMBA AXI
The AMBA AXI protocol is copyrighted by the Arm company. Its first version was
released in 2003, and its latest version 5 was released in March 2023. In 2021 the spec-
ification changed primary terminology, the Master term was replaced with the Manager
term, and the Slave term was replaced with the Subordinate term. It is worth mentioning
because almost all available materials, except the specification, and available IP cores still
use the old terminology. AXI gained a lot of popularity probably because it became de
facto the standard for connecting IP cores in FPGA designs utilizing AMD Xilinx or Intel
chips. Both companies are the major programmable logic devices market vendors and
both offer AXI interconnect cores as well as functional IP cores with AXI interface.

The AXI protocol defines five independent channels:

1. write request (AW),

2. write data (W),

3. write response (B),
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4. read reqeust (AR),

5. read data (R).

Request channels carry control information that describes the nature of the data to be
transferred. Having independent channels for write and read means that the master can
simultaneously write and read the same slave. Write throughput is not limited by read
transactions, and read throughput is not limited by write transactions. This is not true,
for example, for the Wishbone bus.

The specification does not impose possible system interconnect topologies and only men-
tions the most popular ones:

1. shared request and data channels,

2. shared request channel and multiple data channels,

3. multilayer, with multiple request and data channels.

Figure 2.1 presents AXI channel architecture of writes. A single transaction might con-
tain multiple transfers. Write transaction completion is signaled only for a complete
transaction, not for each data transfer in a transaction.

Figure 2.1: AXI channel architecture of writes [4].

Figure 2.2 shows the timing diagram for AXI single read transaction with single data
transfer and a bare minimum number of interface signals. It is the simplest possible
transaction with the minimum number of channels involved. The manager drives address
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Figure 2.2: AXI single read transaction with single data transfer.

and valid signals in the read request channel and the ready signal in the read channel.
The subordinate drives the ready signal in the read request channel and data and valid
signals in the read channel. The side driving the ready signal can assert or deassert it
anytime, even before valid signal assertion. This means handshaking in AXI can take as
little as one clock cycle. A transfer occurs only when both the valid and ready signals are
high. The side driving the valid signal must wait for ready assertion after it asserts the
valid signal. A deadlock happens if the side driving the valid signal waits for the ready
signal assertion before the valid signal assertion and the side driving the ready signal waits
for the valid signal assertion before the ready assertion. To prevent such scenarios, the
specification states that the valid signal source is not permitted to wait until the ready
signal is asserted before asserting the valid signal. The specification forbids combinatorial
paths between input and output signals, both on the manager and subordinate sides.

The AMBA AXI specification also defines the AXI-Lite version of the protocol. The
AXI-Lite is a subset of AXI where all transactions have one data transfer. It is intended
for communication with register-based components and simple memories when bursts of
data transfer are not advantageous.

There is also AMBA AXI-Stream protocol defined in the separate specification [24]. AXI-
Stream is a point-to-point protocol connecting a single Transmitter and a single Receiver.
The terms Master/Manager and Slave/Subordinate are not used in this case, as the data
always flows from the Transmitter to the Receiver. The specification of AXI-Stream de-
scribes how data is transferred but does not describe the meaning of the data. AXI-Stream
is often used in data streaming applications, for example, video processing. Although de-
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fined as a separate protocol, the AXI-Stream utilizes the same valid-ready handshaking
approach as the standard AXI protocol.

2.2 Wishbone
Wishbone bus architecture was developed by Silicore Corporation. It was put into the
public domain in August 2002 by OpenCores (an organization promoting open IP cores
development). Wishbone versions till revision 4 were not copyrighted, and revision 4 is
copyrighted to the OpenCores. Wishbone can be freely copied and distributed.

Wishbone supports various core interconnection means, including:

1. point-to-point,

2. shared bus,

3. crossbar switch,

4. data flow,

5. off chip.

The possible interconnections are presented in Figure 2.3.

Wishbone supports single read/write transactions, with possible pipelining (introduced
in revision 4), block read/write transactions, and read-modify-write transactions. It also
supports registered feedback transactions which allow for better throughput.

Figure 2.4 shows the timing diagram for a classic standard single read transaction with
the bare minimum number of interface signals. It is the simplest possible transaction.
However, it is enough to present how fundamentally different Wishbone control logic is
from the AXI control logic. The transaction starts when the cycle signal is asserted by
the master on the second clock rising edge. The master also drives the address bus, write
enable and asserts the strobe signal to inform the slave that signals are valid and can be
read. The slave drives data on the third clock rising edge and asserts the acknowledgment
signal to inform the master that data is valid. The slave may wait before asserting the
acknowledgment signal in order to throttle the transaction speed.

Compared to the AXI, the handshaking in Wishbone is related to the transaction as a
whole. There is no separate handshaking for requests, data, and write response.
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Figure 2.3: Possible Wishbone interconnections.

2.3 Network on Chip
The network on chip is an on-chip interconnect architecture trying to overcome the limits
of the traditional bus architectures. The problem was observed and reported in the late
1990s, and was initially addressed in the early years of the 21st century [25, 26, 27, 28].
The most popular drawbacks of the traditional bus architectures that NoC tries to solve
include:

1. Limited bandwidth shared by all attached units.

2. Decrease of the maximum frequency with the increase of the number of modules con-
nected to the bus. Every module adds parasitic capacitance, therefore the electrical
performance degrades with the increase of modules number.

3. IPs interface incompatibility. The 32 bits AXI Lite master will simply not work
with the 64 bits Wishbone slave in a traditional bus architecture without an extra
bridge. In the NoC approach each network node can have an individual interface
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Figure 2.4: Wishbone classic standard single read transaction.

for local registers access.

4. Coupled transaction, transport, and physical activities. Changes to the bus physi-
cal implementation can have serious ripple effects upon the implementation of the
higher-level bus behaviors. NoC distinguishes transaction, transport, and physical
layers that can be adjusted or improved independently.

However, NoC is mainly used in cases of high bandwidth performance critical heteroge-
neous SoC applications. Even homogeneous designs focused on accelerating the processing
of gigabytes or terabytes of data (usually implemented using HLS technique) do not use
NoC, but rather different types of AXI interfaces depending on the nature and amount of
data being exchanged between modules [29]. This is because NoC is not free of drawbacks.
The most popular ones are:

1. Latency increase due to the internal network connections and routing algorithms.

2. Increased resource utilization compared to the traditional bus architectures.

3. Increased overall system complexity.

There are numerous different NoC topologies [30, 31, 32, 33, 34, 35]. The most popular
ones include: ring, octagon, star, mesh, torus, folded torus, butterfly, binary tree, fat
tree, cube, crossed cube, hypercube, reduced hypercube, reduced mesh and cluster-based
hybrid, mesh connected ring, cmesh.

Although the NoC architecture was inspired by well-known computer networks such as
LAN or WAN, it differs significantly from them. This is because the implementation of the
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protocols used in these networks, such as IP [36] or TCP [37], would consume a relatively
large amount of resources and would require significant buffering capabilities. NoC packet
typically consists of a header and payload data. The header must include at least the
address of the destination node, but it often also includes data length, data tags, and the
address of the source node. How the data is routed via the network depends on the routing
algorithm. Although the macro-level architecture of the NoC differs significantly from the
traditional bus architecture, the packet data still has to be somehow distributed inside the
module attached to the network via the network interface. There are two standard ways to
achieve this. The first one is dataflow communication, and the second one is address space
communication. This is exactly what traditional buses were designed for. So, in the end,
the traditional bus architectures are still used within the NoC architectures. However,
their scope is limited to the single network nodes. Figure 2.5 presents an example 12
nodes network on chip with the mesh topology.
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Figure 2.5: Example 12 nodes mesh network on chip.
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3 Prior art
This chapter presents the current state of the art. The term „tool” is used for all solutions,
although not all are strictly tools. Moreover, some are standalone entities, while others are
a part of more extensive tools. Each tool has been designed and implemented by different
teams. Although their main goal is the same, they sometimes put an accent on diverse
areas. As a result, relative comparison is not always straightforward. This is why they
are rather matched against a generic template. Nonetheless, none of the available
solutions offers a functional view of data placed in the registers. They are
registers-centric. The description of each tool is prepended with a table summarizing
its capabilities. The order of analysis is alphabetical.

It is important to mention that all described tools and solutions are in continuous devel-
opment, so some of their features might have changed, or new features might have been
added since they were described. It is also worth mentioning that if tool T claims support
for feature F or language L, then it might not be a full support, as all such tools are im-
plemented in an incremental fashion. It does not indicate the weakness of the tools, but
rather shows a pragmatic approach to the problem. There would be no technical progress
in the described field if the tools were usable only when they were 100 % complete.

Table 3.1 presents the result of the review of existing solutions. Comparing bus and
register management tool features is a challenging task. First of all, none of the register-
centric tools, except SystemRDL, has formal specification. The implementation is the
specification. What is more, most of the tools target only a limited set of hardware
description or programming languages, and they are usually tailored to these languages.
Comparing features of FBDL with register-centric tools is also not straightforward, as
FBDL is functionality-centric and has a different paradigm. For example, some of the
tools allow data value range constraining. However, it works only for data fitting a single
register, whereas in FBDL, it works for data of any width. Partial support means that
a given feature is available only to some extent. For example, tools utilizing YAML
[38] format support parametrization achieved using YAML syntax. However, they do
not provide any extra parametrization mechanism, and full design parametrization is not
possible solely with YAML inheritance.
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3.1 airhdl
The airhdl [39] is a web-based AXI4 VHDL/SystemVerilog register generator tool. It also
has a command line version, requiring Java runtime version 8 or higher, accepting register
specification in JSON [40] format. It supports code generation for SystemVerilog, VHDL,
C/C++, HTML [41] or Markdown documentaiton or transformation to IP-XACT XML
[42] format. The tool is closed source, and any plan except the Free one is paid. The
main website has a demo video based upon which it is clear that the tool follows the
register-centric approach.

3.2 Address Generator for Wishbone
The AGWB [3, 43], the successor of addr_gen [44], facilitates the automated generation of
the control system’s HDL and software components based on the XML system description.
It supports code generation for VHDL, C, Python, Forth, XML register map, and HTML
for documentation.

Listing 8 presents an example AGWB registers description in XML format. This snippet
is taken directly from the DAQ readout chain for the STS being prepared for the CBM
experiment at GSI Darmstadt. The hctsp_software_command_slot block has three
control registers with an extra strobe signal associated with the control register. What
is not seen and can not be deduced from the description is the that all three control
registers constitute a broader context. Namely, they are all used to pass arguments to the
procedure sending commands to the set of front-end ASICs. None of the control registers
makes sense without the remaining two registers. What is more, as the control control
register has an associated strobe signal (stb="1") it must be written as the last of the three
registers. However, as the approach is register-centric, the correct write access order must
be coded manually. It leaves room for the programmer’s mistakes. If control_frames
registers are written before the control register, the system „almost works”. The first
command reports CRC error. However, later commands are sent correctly with an extra
one command delay, unless the set of destination front-end ASICs changes. In such cases
valid commands are sent to the invalid set of ASICs, and no error is reported. These
types of bugs can be hard and time-consuming to debug, as there is implicit state storage
between commands in case of incorrect register write order. This kind of mistake happened
to the author during the development and made him think that there must be a better way
to describe data stored in the registers. Listing 9 shows a snippet of a Python method
belonging to a Command class used to send that to a set of front-end ASICs. As the
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access order has to be implemented manually, it is relatively easy to write control before
control_frames by mistake.

<block name="hctsp_software_command_slot">
<creg name="control" stb="1" default="0x0">

<field name="chip_address" width="4"/>
<field name="downlink_mask" width="12"/>
<field name="group_mask" width="8"/>
<field name="sequence_number" width="4"/>

</creg>
<creg name="control_frame" reps="2" default="0x0">

<field name="request_type" width="2"/>
<field name="request_payload" width="15"/>
<field name="crc" width="15"/>

</creg>
</block>

Listing 8: Example AGWB description in XML format.

def send(self, handle):
for i in range(0,2):

handle.control_frame[i].writeb(
(self.crcs[i] << 17) |
(self.payloads[i] << 2) |
self.request_types[i]

)
handle.control.writeb(

(self.sequence_number << 24 ) |
(self.group_mask << 16) |
(self.downlink_mask << 4) |
self.chip_address

)

Listing 9: Snippet of Python method sending commands to the set of font-end ASICs.

3.3 AutoFPGA
AutoFPGA [45] is an FPGA design automation routine. AutoFPGA aims to take a
series of bus component configuration files and compose a design consisting of the various
bus components linked together in logic, having an appropriate bus interconnect, and
more. AutoFPGA is much more than a register generation or bus management tool. It is
more like a uniform framework for implementing FPGA designs. However, it is considered
prior art in this dissertation because register and bus management aspects are a significant
part.
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AutoFPGA files used for design generation contains a lot more information than simply
register definitions. Listing 10 presents a snippet of the AutoFPGA documentation re-
garding the registers description. Listing 11 presents a snippet, regarding register macros,
of atuomatically generated regdefs.h file. This is a standard low level register-centric
approach.

REGDEFS.H.INCLUDE Placed at the top of the regdefs.h file
REGS.NOTE A comment to be placed at the beginning of the register

list for this peripheral
REGS.N The number of registers this peripheral has.

AutoFPGA will then look for keys of the form
REGS.0 through REGS.(REGS.N-1).

REGS.0...? Describes a register by name. The first value is the
offset within the address space of this device.
The second token is a string defining a C #def'd
constant. The third and subsequent tokens represent
human readable names that may be associated with
this register.

REGDEFS.H.DEFNS Placed with other definitions within regdefs.h
REGDEFS.H.INSERT Placed in regdefs.h following all of the

definitions
I may change this to the following notation , though:
REGSDEFS.NOTE
REGS.<name>.ADDR # Offset within the peripheral
REGS.<name>.UNAME(s) # User-readable name
REGS.<name>.DESC(ription for LaTeX)

Listing 10: AutoFPGA documentation on registers definition.

//
// Register address definitions, from @REGS.#d
//
#define R_BUSERR 0x00080000 // 00080000, wbregs names: BUSERR
#define R_FIXEDATA 0x00080004 // 00080004, wbregs names: FIXEDATA
#define R_PWRCOUNT 0x00080008 // 00080008, wbregs names: PWRCOUNT
#define R_RAWREG 0x0008000c // 0008000c, wbregs names: RAWREG
#define R_SIMHALT 0x00080010 // 00080010, wbregs names: SIMHALT
#define R_SPIO 0x00080014 // 00080014, wbregs names: SPIO
#define R_VERSION 0x00080018 // 00080018, wbregs names: VERSION
#define R_BKRAM 0x00100000 // 00100000, wbregs names: RAM

Listing 11: Snippet of regdefs.h file automatically generated by AutoFPGA regarding
register macros.

3.4 Cheby
The Cheby [46, 47], the successor of the Cheburashka [48], aims at defining a file format to
describe the hardware-software interface (the memory map), and a set of tools to generate
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HDL, drivers and documentation from the files. It uses YAML as a register description
file format.

Listing 12 presents an example Cheby registers description in YAML format. The Cheby
generator is capable of generating a C++ library. The library provides a hierarchical
interface over every memory node defined in a memory map. The library interface allows
software developers to read or write to registers and their fields, having all low-level bit-
shifting and masking operations done by the wrapper. This is a higher abstraction than
addresses, masks, and shifts generation and implementing the access manually. However,
there is no way to inform Cheby that a particular set of registers may form a broader
context and that they must always be read or written as a whole in the correct order. The
Cheby is a representative of a typical register-centric approach with abstracted access to
a single register or bit field.
memory-map:

bus: wb-32-be
name: gpios
x-hdl:

busgroup: True
children:
- reg:

name: inputs
description: A register
type: unsigned
width: 32
access: ro

- reg:
name: outputs
type: unsigned
width: 32
access: rw

- submap:
name: gpios_axi4
size: 0x40
description: An AXI4-Lite bus
interface: axi4-lite-32

Listing 12: Example Cheby registers description in YAML format.

3.5 Corsair
The Corsair [49] is a tool for creating and maintaining control and status register maps for
HDL projects. The Corsair accepts JSON, YAML and plain text tables as input formats.
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It is capable of generating files for Verilog, VHDL, C, Python, and documentation written
in Markdown.

Listing 13 presents an example Corsair registers description in YAML format. Listing 14
presents generated C header file. This is a traditional, register-centric approach. An en-
gineer describes registers at the lowest level and as a result gets information on addresses,
masks, and shifts (LSB in this case). Later, this information is used in the manual im-
plementation of the software accessing the data. Corsair also allows for code generation
for Python. In this case, proper addressing, masking, and shifting are automatically
generated. However, there is no way to define a broader context consisting of multiple
registers.

3.6 Tools provided by FPGA vendors
Development environments provided by FPGA vendors offer some capabilities for bus
and register management (for example, Block Designer - AMD Xilinx, Platform Designer
- Intel). They allow for connecting master, slave, and bus fabric components using GUI
tools. Figure 3.1 shows a simple system designed in Vivado Block Designer, containing
blocks interconnected via the local AXI bus.

Figure 3.1: A simple design created using Block Designer in Xilinx Vivado environment
[50].

Figure 3.2 shows the address table generated automatically by that tool. It is possible to
adjust component address spaces manually. In the case of ready-to-use IP cores included
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regmap:
- name: DATA

description: Data register
address: 4
bitfields:
- name: FIFO

description: Write to push value to TX FIFO, read to get data from RX FIFO
reset: 0
width: 8
lsb: 0
access: rw
hardware: q
enums: []

- name: FERR
description: Frame error flag. Read to clear.
reset: 0
width: 1
lsb: 16
access: rolh
hardware: i
enums: []

- name: STAT
description: Status register
address: 12
bitfields:
- name: BUSY

description: Transciever is busy
reset: 0
width: 1
lsb: 2
access: ro
hardware: ie
enums: []

- name: RXE
description: RX FIFO is empty
reset: 0
width: 1
lsb: 4
access: ro
hardware: i
enums: []

Listing 13: Example Corsair register description in YAML format.

in the development environments, the register description is included in the core config-
uration file (vendor-specific format). The tools can generate device tree descriptions and
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access codes, for example for Linux drivers. However, in the case of custom components,
only the address space is reserved. The user still needs a custom mechanism for register
management within the component.

Figure 3.2: The address space allocation for the simple design from figure 3.1.

Unfortunately, it is difficult to manage designs using vendor EDA tools when the com-
plexity of the system grows, especially when the number of blocks or nested subblocks is
parameterized. Moreover, heavy reliance on GUI makes it incompatible with purely hdl-
based or script-driven development flow. Opening the GUI application to apply changes
is also relatively time-consuming compared to applying a change in a text file. A single
change in a GUI widget often leads to multiple changes in project files. This makes track-
ing changes of the design using revision control system more complicated compared to
the traditional approach in which configuration is done using textual files.

3.7 hdl_registers
The hdl_registers [51] project is an open-source HDL register generator. It is capable of
generating files for C, C++, HTML (documentation), VHDL, and Python. Hdl_registers
accepts register description in the TOML file format. It is also possible to work directly
with the Python API without providing a TOML file.

Listing 15 presents an example hdl_registers registers description in TOML format. List-
ing 16 presents generated C header file. This is a typical, register-centric approach.
Information on addresses, shifts, and masks is generated, and the user has to utilize it to
write the access code.

However, the hdl_registers is also able to generate code with higher abstraction for C++
and Python. Listing 17 presents generated C++ header file. The higher abstraction is
achieved by generating getters and setters for registers and bit fields. No need to use
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address, shift, and mask values directly. However, this approach is still register-centric,
as getters and setters are generated only for registers and all data fitting within a single
register. If a counter width were equal to two registers, the user would have to manually
glue read access by calling two getters. There is also no way to provide information on
whether the read must provide atomicity in such a case. In the case of atomicity, it must
be manually coded in HDL.

What is more, the generated interface is distinct for different targets (C vs C++). How-
ever, the nature of the data stored within the registers does not inherit from the language
used to implement the access but from the functionality it serves. If the generated C++
code allows directly reading bit fields suiting a single register, why does the generated C
code enforce the user to apply shifting and masking manually?

3.8 II & CII
The II (Internal Interface) [52] and CII (Component Internal Interface) are solutions
developed for electronic systems created for CMS and DESY [53]. Although it is closed-
source, its approach has been described in papers [54, 55]. The description in the papers
does not allow for the reconstruction of the internal logic of the tool. However, based
on the attached figures and description, it looks like CII approach is register-centric with
abstracted away register width. A user is provided with the concept of records. A record
has a type and width that can be greater than the width of the single register. Whether
the access to the record is atomic is unclear based on the available information. The
user does not define the functionality of the data placed in the record but the access
rights.

3.9 IP-XACT
The IP-XACT [56] is neither a bus and register management tool nor a design framework.
It is more like an interchangeable IP documentation format. The focus of the standard
is to act as an electronic databook - its primary function is to „document what’s there”
[57]. However, it is mentioned as prior art as there were at least two [58, 59] tries to
implement the bus and registers code generators from the IP-XACT registers description.
IP-XACT uses XML file format for data representation. These XML files are usually
highly unreadable as they are intended for machines. To make any use of them, special
tools, such as Kactus2 [60], are needed. These are usually GUI programs with a friendly
user interface using IP-XACT XML file format as an input/output file format.
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3.10 Opentitan Register Tool
Opentitan [61, 62] is an open-source silicon Root of Trust project. As such, it has a
subpart named the Register Tool [63] that can be used as a standalone tool. It uses
Hjson (a syntax extension to JSON) as an input file format for the register description.
It is capable of generating files for HTML documentation, standard JSON, Verilog, and
C.

Listing 18 presents an example Opentitan register description. The Opentitan Register
Tool can be used to generate C header files. The generated C header file contains infor-
mation on registers addresses, bit field shifts, and masks and may have information on
enumerated names and values. This is a typical register-centric approach. A developer
has to use the address, mask, and shift information to implement firmware or software
access code manually.

3.11 Register Wizard
The Register Wizard is a free tool from the Inventas (formerly Bitvis) company. It has
been abandoned, but the company sends it on request [64]. The presentation links are
also valid [65, 66]. It uses Model Description File format, which is actually a JSON
format. It is capable of generating files for VHDL, C header, and documentation written
in Office Open XML format. Listing 19 shows a register definition template from the
Register Wizard documentation on defining registers and bit fields. This is a typical
register-centric approach. The user describes particular registers, their addresses, access
properties, internal bit fields, etc. The generated C header file includes information on
addresses, masks, and shifts.

3.12 RgGen
RgGen [67] automatically generates source code related to configuration and status regis-
ters (CSR). RgGen is capable of generating files for SystemVerilog, VHDL, UVM, C, and
register map documents written in Markdown.

What makes RgGen unique is the fact that register map specifications can be written
in multiple formats, such as Ruby language API, YAML, JSON, TOML, Spreadsheet
(XLSX, XLS, OSD, CSV), SiFive DUH (Design u Hardware) [68].

Listing 20 presents an example RgGen registers description in YAML format. Listing

43



21 presents generated C header file. This is a traditional, register-centric approach. An
engineer describes registers at the lowest level and as a result gets information on ad-
dresses/offsets, masks, and widths. Later on, this information is used in the manual
implementation of software accessing the data.

3.13 SystemRDL
The SystemRDL [69] is different from all other available solutions as it is the only one
having an official specification. The SystemRDL is a language aimed at the detailed
description of the registers. Version 2.0 supports the parameterization of components
and the structure of the system. SystemRDL is by far the most advanced solution with
the greatest number of features but also the most complex. Whether all of these features
should be a part of the bus and register management tool is a separate topic. However the
fact that most SystemRDL compilers do not implement all features makes the question
at least partially justified. There are some closed-source paid [70, 71, 72] as well as open-
source free SystemRDL compilers [73, 74, 75]. Listing 4 presents an example SystemRDL
description.

The SystemRDL standard allows users to extend components with custom properties. The
user-defined properties allow to add additional meaning to the data. This mechanism is
quite flexible but also has some drawbacks. The first one is that user-defined properties
are compiler specific. The second one is description verbosity, as SystemRDL is quite
verbose even without extra custom properties. One reason for such a state might be that
each register in SystemRDL must have at least one field, and registers without fields are
not allowed.

3.14 vhdMMIO
VhdMMIO [76] is a tool to generate AXI4-Lite MMIO infrastructure based on YAML
specification files. A single register file describes registers for a single AXI4-Lite slave
and maps to a single VHDL entity. VhdMMIO is also capable of generating HTML for
documentation. Listing 22 presents an example vhdMMIO registers description in YAML
format.

VhdMMIO is distinct from all other register-centric tools. This is because vhdMMIO has
the concept of registers/fields behavior (vhdMMIO uses the term field for the register
and subfield for the field). This allows generating more gateware code automatically.
However, as the behavior is bound to the particular field or register and not to the data,
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it is impossible to describe broader data contexts occupying more than one register, such
as procedures or streams, or even single data occupying more than one register, without
explicitly defining particular registers. The user also has to assign addresses to particular
fields explicitly. This makes vhdMMIO still a register-centric approach as the user thinks
and acts in the following order: define register, then define data, then define the behavior
of the data. Whereas in FBDL user thinks and acts in the following order: define data,
then define the functionality of the data. All work related to the registers is then done
automatically. The concept of a register is not even present in the thought flow.

3.15 wbgen2
Wbgen2 [77] is one of the first open-source tools for bus and register management. The
slave description is prepared in the custom format and may contain registers, fields, in-
terrupts, memory blocks, and FIFO. The wbgen2 is capable of generating the slave HDL
code in VHDL or Verilog and C headers for integration. Additionally, it may generate
the documentation for the created slave in Latex, Texinfo, or HTML. Wbgen2 does not
support vectors of registers or blocks, or nested blocks. Listing 23 presents example reg-
isters description in wbgen2 specific format. The generated C code contains information
on register and field addresses and masks.
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#ifndef __REGS_H
#define __REGS_H
#define __I volatile const // 'read only' permissions
#define __O volatile // 'write only' permissions
#define __IO volatile // 'read / write' permissions

#include "stdint.h"
#define CSR_BASE_ADDR 0x0

#define CSR_DATA_ADDR 0x4
#define CSR_DATA_RESET 0x0
typedef struct { uint32_t FIFO : 8; uint32_t :16; uint32_t FERR : 1; } csr_data_t;
#define CSR_DATA_FIFO_WIDTH 8
#define CSR_DATA_FIFO_LSB 0
#define CSR_DATA_FIFO_MASK 0x4
#define CSR_DATA_FIFO_RESET 0x0
#define CSR_DATA_FERR_WIDTH 1
#define CSR_DATA_FERR_LSB 16
#define CSR_DATA_FERR_MASK 0x4
#define CSR_DATA_FERR_RESET 0x0

#define CSR_STAT_ADDR 0xc
#define CSR_STAT_RESET 0x0
typedef struct

{ uint32_t :2; uint32_t BUSY : 1; uint32_t :4; uint32_t RXE : 1; } csr_stat_t;
#define CSR_STAT_BUSY_WIDTH 1
#define CSR_STAT_BUSY_LSB 2
#define CSR_STAT_BUSY_MASK 0xc
#define CSR_STAT_BUSY_RESET 0x0
#define CSR_STAT_RXE_WIDTH 1
#define CSR_STAT_RXE_LSB 4
#define CSR_STAT_RXE_MASK 0xc
#define CSR_STAT_RXE_RESET 0x0

typedef struct {
__IO uint32_t RESERVED0[1];
union { __IO uint32_t DATA; __IO csr_data_t DATA_bf; };
__IO uint32_t RESERVED1[1];
union { __I uint32_t STAT; __I csr_stat_t STAT_bf; };

} csr_t;

#define CSR ((csr_t*)(CSR_BASE_ADDR))
#endif /* __REGS_H */

Listing 14: Example C header file generated using Corsair (comments removed for
brevity).
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[register.configuration]
mode = "r_w"
# This will allocate a bit field named "enable" in the "configuration" register.
[register.configuration.bit.enable]
default_value = "1"
# This will allocate a bit vector field named "data_tag" in the
# "configuration" register.
[register.configuration.bit_vector.data_tag]
width = 4
default_value = "0101"

[register.status]
mode = "r"
[register.status.bit.idle]
default_value = "1"
[register.status.bit.stalling]
description = "'1' if the module is currently being stalled."
[register.status.bit_vector.counter]
width = 8

Listing 15: Example hdl_registers description in TOML format.
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#ifndef EXMPL_REGS_H
#define EXMPL_REGS_H

#define EXMPL_NUM_REGS (2u)

typedef struct example_base_addresses_t {
uint32_t read_address;
uint32_t write_address;

} example_base_addresses_t;
typedef struct example_regs_t {

uint32_t configuration;
uint32_t status;
example_base_addresses_t base_addresses[2];

} example_regs_t;

#define EXMPL_CONFIGURATION_INDEX (0u)
#define EXMPL_CONFIGURATION_ADDR (4u * EXMPL_CONFIGURATION_INDEX)

#define EXMPL_CONFIGURATION_ENABLE_SHIFT (0u)
#define EXMPL_CONFIGURATION_ENABLE_MASK (0b1u << 0u)
#define EXMPL_CONFIGURATION_ENABLE_MASK_INVERSE (~EXMPL_CONFIGURATION_ENABLE_MASK)

#define EXMPL_CONFIGURATION_DATA_TAG_SHIFT (1u)
#define EXMPL_CONFIGURATION_DATA_TAG_MASK (0b1111u << 1u)
#define EXMPL_CONFIGURATION_DATA_TAG_MASK_INVERSE (~EXMPL_CONFIGURATION_DATA_TAG_MASK)

#define EXMPL_STATUS_INDEX (1u)
#define EXMPL_STATUS_ADDR (4u * EXMPL_STATUS_INDEX)

#define EXMPL_STATUS_IDLE_SHIFT (0u)
#define EXMPL_STATUS_IDLE_MASK (0b1u << 0u)
#define EXMPL_STATUS_IDLE_MASK_INVERSE (~EXMPL_STATUS_IDLE_MASK)

#define EXMPL_STATUS_STALLING_SHIFT (1u)
#define EXMPL_STATUS_STALLING_MASK (0b1u << 1u)
#define EXMPL_STATUS_STALLING_MASK_INVERSE (~EXMPL_STATUS_STALLING_MASK)

#define EXMPL_STATUS_COUNTER_SHIFT (2u)
#define EXMPL_STATUS_COUNTER_MASK (0b11111111u << 2u)
#define EXMPL_STATUS_COUNTER_MASK_INVERSE (~EXMPL_STATUS_COUNTER_MASK)

#endif // EXMPL_REGS_H

Listing 16: Example C header file generated using hdl_registers (comments removed for
brevity).
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#pragma once
#include <cassert>
#include <cstdint>
#include <cstdlib>

namespace fpga_regs {

class IExample {
public:

static const size_t num_registers = 2uL;

// Length of the "base_addresses" register array
static const size_t base_addresses_array_length = 3uL;

virtual ~IExample() { }

virtual uint32_t get_configuration() const = 0;
virtual void set_configuration(uint32_t register_value) const = 0;

virtual uint32_t get_configuration_enable() const = 0;
virtual uint32_t get_configuration_enable_from_value(

uint32_t register_value) const = 0;
virtual void set_configuration_enable(uint32_t field_value) const = 0;
virtual uint32_t set_configuration_enable_from_value(

uint32_t register_value, uint32_t field_value) const = 0;
virtual uint32_t get_configuration_data_tag() const = 0;
virtual uint32_t get_configuration_data_tag_from_value(

uint32_t register_value) const = 0;
virtual void set_configuration_data_tag(uint32_t field_value) const = 0;
virtual uint32_t set_configuration_data_tag_from_value(

uint32_t register_value, uint32_t field_value) const = 0;

virtual uint32_t get_status() const = 0;
virtual uint32_t get_status_idle() const = 0;
virtual uint32_t get_status_idle_from_value(uint32_t register_value) const = 0;
virtual uint32_t get_status_stalling() const = 0;
virtual uint32_t get_status_stalling_from_value(uint32_t register_value) const = 0;
virtual uint32_t get_status_counter() const = 0;
virtual uint32_t get_status_counter_from_value(uint32_t register_value) const = 0;

};

} /* namespace fpga_regs */

Listing 17: Example C++ header file generated using hdl_registers (comments removed
for brevity).
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{ name: "REGA",

desc: "Description of register",

swaccess: "rw",

resval: "42",

fields: [

{ bits: "15:0",

name: "RXS",

desc: "Description of bit field",
}
{ bits: "16",

name: "ENRXS"
}

}

Listing 18: Example Opentitan register description in Hjson format.

"registers": [{
"name": "",
"configuration": {},
"address": "",
"summary": [],
"description": [],
"width": ,
"access": "",
"signal": ""
"reset": "",
"location": "",
"coreSignalProperties": {},
"fields": [{

"name": "",
"position": "",
"description": [],
"access": "",
"signal": "",
"reset": "",
"location": "",
"coreSignalProperties": {}

}]
}]

Listing 19: Snippet from the Register Wizard documentation on defining registers and
bit fields.
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register_blocks:
- name: block_0

byte_size: 256
registers:
- name: register_0

bit_fields:
- {name: bit_field_0, bit_assignment: {width: 4}, type: rw , initial_value: 0}
- {name: bit_field_1, bit_assignment: {width: 2}, type: wrs , initial_value: 0}
- {name: bit_field_2, bit_assignment: {width: 2}, type: rowo, initial_value: 0}

- name: register_1
bit_fields:
- <<:
- { bit_assignment: { lsb: 0, width: 1 }, type: rw, initial_value: 0 }
- labels:

- { name: foo, value: 0, comment: 'FOO value' }
- { name: bar, value: 1, comment: 'BAR value' }

Listing 20: Example RgGen registers description in YAML format.

#ifndef BLOCK_0_H
#define BLOCK_0_H
#include "stdint.h"
#define BLOCK_0_REGISTER_0_BIT_FIELD_0_BIT_WIDTH 4
#define BLOCK_0_REGISTER_0_BIT_FIELD_0_BIT_MASK 0xf
#define BLOCK_0_REGISTER_0_BIT_FIELD_0_BIT_OFFSET 0
#define BLOCK_0_REGISTER_0_BIT_FIELD_1_BIT_WIDTH 2
#define BLOCK_0_REGISTER_0_BIT_FIELD_1_BIT_MASK 0x3
#define BLOCK_0_REGISTER_0_BIT_FIELD_1_BIT_OFFSET 4
#define BLOCK_0_REGISTER_0_BIT_FIELD_2_BIT_WIDTH 2
#define BLOCK_0_REGISTER_0_BIT_FIELD_2_BIT_MASK 0x3
#define BLOCK_0_REGISTER_0_BIT_FIELD_2_BIT_OFFSET 6
#define BLOCK_0_REGISTER_0_BYTE_WIDTH 4
#define BLOCK_0_REGISTER_0_BYTE_SIZE 4
#define BLOCK_0_REGISTER_0_BYTE_OFFSET 0x0
#define BLOCK_0_REGISTER_1_BIT_WIDTH 1
#define BLOCK_0_REGISTER_1_BIT_MASK 0x1
#define BLOCK_0_REGISTER_1_BIT_OFFSET 0
#define BLOCK_0_REGISTER_1_BYTE_WIDTH 4
#define BLOCK_0_REGISTER_1_BYTE_SIZE 4
#define BLOCK_0_REGISTER_1_BYTE_OFFSET 0x4
#endif

Listing 21: Example C header file generated using RgGen.
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metadata:
name: stream_monitor
brief: monitors a number of streams.

features:
bus-width: 32
optimize: yes

entity:
clock-name: axil_aclk
reset-name: axil_aresetn
reset-active: low
bus-prefix: axil_
bus-flatten: yes

interface:
flatten: yes

fields:
- repeat: 4 # <-- number of streams!

stride: 5
field-repeat: 1
subfields:
- address: 0

name: ecnt
doc: |
Accumulates the number of elements transferred on the stream. Writing to
the register subtracts the written value.

behavior: custom
interfaces:
- input: valid
- input: ready
- input: count:8 # <-- width of count field!
- input: dvalid
- input: last
- drive: ivalid
- drive: iready
- drive: itransfer
- drive: ipacket
- state: accum:32

- address: 4
name: vcnt
behavior: internal-counter
internal: ivalid

- address: 8
name: rcnt
internal: iready

Listing 22: Example vhdMMIO registers description in YAML format.
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peripheral {
name = "GPIO Port";
description = "A sample 32-bit general-purpose bidirectional I/O port.";
hdl_entity = "wb_slave_gpio_port";
prefix = "gpio";
reg {
name = "Pin direction register";
description = "A register defining the direction of the GPIO potr pins.";
prefix = "ddr";
field {
name = "Pin directions";
description = "1 - OUTPUT, 0 - INPUT";
type = SLV;
size = 32;
access_bus = READ_WRITE;
access_dev = READ_ONLY;

};
};
reg {
name = "Pin input state register";
description = "A register containing the current state of input pins.";
prefix = "psr";
field {
name = "Pin input state";
description = "Each bit reflects the state of corresponding GPIO port pin.";
type = SLV;
size = 32;
access_bus = READ_ONLY;
access_dev = WRITE_ONLY;

};
};
reg {
name = "Port output register";
description = "Register containing the output pin state.";
prefix = "pdr";
field {
name = "Port output value";
description = "Writing '1' sets the corresponding GPIO pin to '1'";
size = 32;

};
};

};

Listing 23: Example wbgen2 registers description in wbgen2 specific format.
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4 Dissertation

4.1 Thesis
It is possible to infer the bus and register structure based on the description of the func-
tionality of the data that shall be stored in the registers. Moreover, such an approach
offers some significant advantages in most typical use cases compared to the classic ap-
proach in which register structure is described explicitly.

4.2 Aim and scope
The main aim of the dissertation is to design a language allowing to describe system bus
and registers by defining functionality of the data. The work also includes the imple-
mentation of the proof of the concept compiler as well as the discussion of some general
implementation details that any FBDL-compliant compiler will likely have to face.
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5 Functionalities
It is recommended to read the subsections of this chapter concurrently with

the corresponding subsections of the FBDL specification (first specification
then dissertation) or to read the whole specification first. The specification is
more focused on answering the „how” questions, whereas this dissertation is
more focused on answering the „why” questions and describing the benefits
of the newly proposed functionality-centric approach.

5.1 Block
The block functionality is mainly used to logically group or encapsulate functionalities.
The block concept is not unique for FBDL approach as some of the register-centric ap-
proaches already had the same concept (for example, AGWB or SystemRDL). However,
thanks to the type parametrization and type extending mechanism, it is easy to instan-
tiate blocks with slightly different functionality. This is a common scenario in the case
of the FPGAs with two SLRs [78]. The SLRs might have different numbers of available
resources and might be connected to different hardware IP blocks. Let’s suppose there
are two SLRs, SLR0 and SLR1. SLR0 is connected to the PCIe, and there is a high
throughput PCIe-AXI bridge in the SLR0. In case of any problems with the bridge, there
might be a need to debug it. A side access channel is required for SLR0, hence it must
have two master ports. What is more, it must have some extra configuration and status
data compared to the SLR1. Listing 24 presents how such requirements can be easily
satisfied in FBDL using type parametrization and type extending mechanisms.

5.2 Bus
The bus functionality represents the bus structure. The bus named Main is the default
entry point for the description used for the code generation. A compiler is free to accept an
argument allowing to change the root of the description from Main to any valid identifier.
However, care is advised when choosing a naming convention for functionalities. Usually, a
language has its preferred naming conventions. Some languages have multiple conventions
(C/C++/VHDL). Some languages have only a single convention (Go/Python), but they
are not formal, so there might be multiple in practice. As FBDL description might be
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type SLR(masters_count=1) block
masters = masters_count
const PERIPHERAL_COUNT 1024
C [PERIPHERAL_COUNT]config
S [PERIPHERAL_COUNT]status; width = 14
P proc

p1 param; width = 16
p2 param; width = 8
r return; width = 25

Main bus
# SLR0 has 2 masters and is extended with some extra
# config and status for high throughput PCIe-AXI bridge
# configuration and debugging via low throughput
# UART-AXI bridge.
SLR0 SLR(2)

PCIe_AXI_config config; width = 16
PCIe_AXI_status status; width = 48; atomic = false

SLR1 SLR

Listing 24: Example of type parametrization and type extending based on the block
functionality.

(actually almost always is) compiled into multiple target languages, it is impossible to
suit all naming conventions for given targets. Instead, it should be guaranteed that the
given functionality name from the given .fbd file has the same name in all different
target source files. It implies that the two most popular naming conventions (camelCase,
snake_case) should be avoided for functionality instance names and for constants that
should be accessible in target languages. Both camelCase and snake_case start with a
lowercase letter. It imposes restrictions on how the target code might be implemented.
For example, in Go, data types, fields, or functions starting with lowercase letters are not
exported. A potential implementation would have to do one of the following:

1. Change the instance names so that the first letters are uppercase. The drawback is
that the same instance would have at least two different names across all targets.

2. Generate extra functions allowing access to functionalities. For example, a function
translating string into proper field value. This would imply extra performance
overhead and more complex code.

The remaining naming conventions starting with uppercase letter are PascalCase and
Pascal_Snake_Case. However, as some languages (VHDL, for example) are case insen-
sitive and there is no way to enforce PascalCase, the Pascal_Snake_Case, and
SCREAMING_SNAKE_CASE are strongly recommended. Broken pascalcase is really hard to
read, especially after several hours of sitting in front of the computer screen.
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5.3 Config
The config functionality is almost like a control register from the typical register-centric
approach. Almost, because the config functionality abstracts away the limited width of
the register.

Listing 25 shows an example description with a single config with a width equal to the
register width in the RgGen. As RgGen does not support registers without bit fields,
there is a need to type the C name twice. Most register-centric tools support registers
without bit fields. Listing 26 shows an example description with a single config with a
width equal to the register width in the FBDL. Listings 27 and 28 present example code
writing the config. In case of config width not greater than the register width, the code
is the same for the register-centric approach and for FBDL.
- register_block:

- name: Main
- registers:
- name: C

bit_fields:
- { name: C, bit_assignment: { width: 32 }, type: rw }

Listing 25: Example config instantiation with width equal to the register width in the
RgGen.

Main bus
C config

Listing 26: Example config instantiation with width equal to the register width in the
FBDL.

def do_something():
value = prepare_value()
Main.C.write(value)

Listing 27: Example config write utilizing the code generated by the register-centric ap-
proach compiler.

Listing 29 shows an example description with a single config with a width greater than the
register width in the RgGen. Listing 30 shows an example description with a single config
with a width greater than the register width in the FBDL. In this case, there is no need to
adjust the code writing the config for FBDL. As any FBDL compiler is obliged to generate
functionality write and read access code, the code from listing 28 is still valid. However,
the register-centric approach code needs adjustments as an extra register has been added.
Listing 31 presents adjusted code. It takes extra time to write the code, and there is a
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def do_something():
value = prepare_value()
Main.C.write(value)

Listing 28: Example config write utilizing the code generated by the FBDL compiler.

room for possible mistakes. Firstly, the masks and shifts need to be applied to the value
manually. Even if the masks and shifts are generated as constants/variables, there is still
a possibility of typing an incorrect name. Secondly, if the config needs atomic access, then
the registers must be read/written in the correct order. Thirdly, the atomicity must be
manually coded at the HDL side. None of these is an issue in the FBDL, as everything
is handled automatically by the compiler. This is the result of looking at the config
as a functionality, not as a control register (the user cares about it as a whole, not as
fragmented pieces).

- register_block:
- name: Main
- registers:
- name: C1

bit_fields:
- { name: C1, bit_assignment: { width: 32 }, type: rw }

- name: C2
bit_fields:
- { name: C2, bit_assignment: { width: 1 }, type: rw }

Listing 29: Example config instantiation with width greater than the register width in
the RgGen.

Main bus
C config; width = 33

Listing 30: Example config instantiation with width greater than the register width in
the FBDL.

5.4 Irq
The irq functionality represents an interrupt handling. Whether interrupts should be
considered as a part of a bus is a debatable topic. It has been decided that FBDL shall
provide support for interrupts because of the following reasons:

1. Interrupts, in most cases, have associated registers informing about the interrupt
source.
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def write_C(value):
Main.C1.write(value & 0xFFFFFFFF)
Main.C2.write((value >> 32) & 0x1)

def do_something():
value = prepare_value()
write_C(value)

Listing 31: Example config write utilizing the code generated by the register-centric ap-
proach compiler - config wider than register (33 bits).

2. Interrupts, in most cases, have associated enable/mask registers allowing switching
on or off particular interrupts.

3. Interrupt lines are frequently routed together with bus lines.

Although FBDL supports interrupts, the support is limited solely to interrupt handling.
For example, there is no support for interrupts hierarchy (this feature is present, for
instance, in SystemRDL). This is because the interrupts hierarchy is not related to the
bus in any way, and it can be easily created at the provider side by properly connecting
interrupt components. There is also no way to configure whether an interrupt is triggered
by the high or low level or a rising or falling edge. As FBDL assumes positive logic,
the high level is assumed for level-triggered interrupts, and the rising edge is assumed
for edge-triggered interrupts. Low-level interrupts or falling edge interrupts can be easily
handled by negating the signal at the provider side. Adding the distinction into the FBDL
would unnecessarily complex the language and would create a second way for solving the
same problem.

5.5 Mask
The mask functionality is very similar to the config functionality. From the provider’s
perspective, there is no difference between the mask and the config. However, there is a
difference in the interface generated for the requester. The mask is bit-oriented, whereas
the config is value oriented.

The mask has all the same advantages over the register-centric approach as the config has.
There is also no need to add the mask prefix or suffix to the name to indicate to the user
that particular data is a mask, as the type already indicates it. Additionally, it also has
automatically generated means for bitwise operations. The interface must include ways
for:

1. Setting (writing 1) particular bits while simultaneously clearing remaining bits.
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2. Clearing (writing 0) particular bits while simultaneously setting remaining bits.

3. Setting (writing 1) particular bits without changing the state of remaining bits.

4. Clearing (writing 0) particular bits without changing the state of remaining bits.

5. Toggling particular bits without changing the state of remaining bits.

Appendix B presents a code that can be automatically bound to the data solely based on
the distinct type for mask.

5.6 Memory
The memory functionality is used to directly connect and map an external memory to the
generated bus address space. The memory does not have any valid inner functionalities.
In SystemRDL, for example, within a memory it is possible to have virtual child instances
representing a software view of the memory data. The FBDL takes a different approach
in this case. As memory can be seen as a continuous area of storage elements, one can
describe the layout of the data within the memory using a separate FBDL description
file or even using one of the register-centric tools if it makes more sense in a particular
case. An access interface used to access the data in the memory can then use the memory
access methods generated for the primary FBDL description (the one having the memory
functionality). The idea is presented in figure 5.1. Such an approach keeps the language
smaller, more concise, and orthogonal.

Figure 5.1: A possible access path to the external memory with separate FBDL descrip-
tion.

Memory can also be connected to the bus using the proc or stream functionality (tech-
nically, it is also possible using solely configs, but this method is verbose, vague, and
impractical, so it has been omitted). Each of the five approaches (memory, two proc
approaches, two stream approaches) has its advantages and disadvantages. Global ad-
vantage (+), global disadvantage (-), proc relative characteristic (•), stream relative
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characteristic (*).

Memory:

+ The best potential throughput equal to the bus throughput.

+ No need for wrapper logic.

- To achieve the maximum throughput for block transactions, both the bus and the
access interface must support true block transactions.

- Generated address space size increased by the memory address space size.

One proc:

+ Minimal generated address space size increase.

- The worst throughput limited by the requester-provider round-trip latency for each
item access.

• The write access is additionality limited by the mandatory read of return data.

Two procs:

+ Minimal generated address space size increase.

• Needs more bits than one proc approach, as the memory address is repeated in the
second proc.

- The worst throughput limited by the requester-provider round-trip latency for each
item access.

• The write access is not additionality limited by the mandatory read of return data,
as it is in the case of one proc approach.

Stream - common memory address in separate config:

+ Minimal generated address space size increase.

+ The throughput for block read and write can potentially equal the bus throughput.

- Suboptimal single read and write accesses because of additional memory address
write to separate config.

- Needs more complex implementation as both the bus and the access interface must
support true cyclic transactions to achieve maximum throughput.

- Needs wrapper logic if memory throughput is lower than the bus throughput for
cyclic transactions.
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Stream - downstream with its own memory address param.

+ Minimal generated address space size increase.

* Needs more bits than one stream with a common memory address, as the memory
address must be placed for upstream in the config anyway.

+ The throughput for block read and write can potentially equal the bus throughput.

+ The throughput for random writes can potentially equal the bus throughput, as the
memory address is the downstream param.

- Suboptimal single read access because of additional memory address write to sepa-
rate config.

- Needs potentially the most complex implementation as both the bus and the access
interface must support true cyclic block transactions to achieve maximum through-
put.

- Needs wrapper logic if memory throughput is lower than the bus throughput for
cyclic transactions.

Particular advantages or disadvantages of given approaches may not be valid if access
to the memory is of read-only or write-only type. To make a satisfactory choice for a
particular design, a user must take into account at least the following factors: required
throughput, maximum overall address space size, type of memory access (read-write,
read-only, write-only), type of memory transactions (will there be more single or block
transactions), design simplicity. Listings 32, 33, 34, 35, 36 present example descriptions
of five discussed external memory connections. The memory has a read-write access
type, its size equals 65536 words, and the word with equals 16 bits. Depending on the
requirements, it is also possible to mix some of the approaches. For example, if memory is
written in blocks and writes require high throughput, but it is read in single transactions,
then it is possible to use the stream for writes and proc for reads.

Main bus
Mem memory

size = 2 ** 16
width = 16

Listing 32: FBDL external memory connection using memory functionality.
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Main bus
Access_Mem proc

addr param; width = 16
data_in param; width = 16
read_write param; width = 1 # 0 - read, 1 - write
# The delay depends on the clock frequency
# and read latency.
delay = 1 us
data_out return; width = 16

Listing 33: FBDL external memory connection using one proc functionality.

Main bus
Read_Mem proc

addr param; width = 16
delay = 1 us
data return; width = 16

Write_Mem proc
addr param; width = 16
data param; width = 16

Listing 34: FBDL external memory connection using two proc functionalities.

5.7 Param
The param functionality is an inner functionality of the proc and stream functionalities.
The param functionality does not have the default property. This implies that proc or
stream parameters cannot have default values, which further implies that functions or
methods generated for the requester also do not have default values for parameters. It
has been designed this way because not all programming languages support default values
for function parameters (for example, C, Go, Rust). This could be worked around as the
code for the requester is automatically generated anyway. However, in the end, it has
been decided that adding support for the default value for the param functionality is not
worth because of the following reasons:

1. It would add extra complexity to the FBDL compilers.

2. Programming languages without the support for default values for function param-
eters are doing well. There are even negative opinions on default values for function
parameters. The argument behind these opinions is that they make code less read-
able and harder to analyze.

3. User can always implement wrapper functions in the target language.
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Main bus
addr config; width = 16
Read_Mem stream

data return; width = 16
Write_Mem stream

data param; width = 16

Listing 35: FBDL external memory connection using two stream functionalities with
common address config.

Main bus
addr config; width = 16
Read_Mem stream

data return; width = 16
Write_Mem stream

addr param; width = 16
data param; width = 16

Listing 36: FBDL external memory connection using two stream functionalities with
separate address in downstream.

5.8 Proc
The proc functionality is a concept not present in the register-centric approaches. It
represents a procedure called by the requester and carried out by the provider. The proc
functionality is a good representative presenting how the functional view on the data can
significantly reduce the amount of manual work and increase the code robustness [79]. It
is called proc (from procedure), and not, for example, func (from function), to highlight
that this action has side effects and might take a non-negligible amount of time. In other
words, it is not pure.

Listing 8 presents an example taken directly from the data acquisition design for the CBM
experiment. Listing 9 presents Python code that had to be coded manually. Section 3.2
describes what is not optimal in this case in the register-centric approach. Listing 37
presents a description of the same block in FBDL format. Based on the description, it is
already clear the inferred registers will be used for procedure call.

5.9 Return
The return functionality is an inner functionality of the proc and stream functionalities.
It represents data returned by a procedure or streamed by an upstream. Technically, it was
possible to add direction property to the param functionality, similar to the procedures
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type HCTSP_Software_Command_Slot block
Send proc

chip_addr param; width = 4
downlink_mask param; width = 12
group_mask param; width = 8
sequence_number param; width = 4

request_type [2]param; width = 2
request_payload [2]param; width = 15
crc [2]param; width = 15

Listing 37: HCTSP software command slot block description in FBDL format.

in the Ada language. However, param and return do not have the same properties.
Making them distinct also makes the language design less fragile in case of potential
future enhancements as it helps to avoid inter-property dependencies.

5.10 Static
The static functionality represents data placed at the provider side that shall never change.
The register-centric approach usually achieves this using a status register driven by a fixed
value. However, if it is impossible to mark the register as read-only for both sides, then
it is not clear that the data inside the register never changes without any extra comment
or code analysis. In FBDL, such constant data has its own type.

The static functionality may be used, for example, for versioning, bus id, bus generation
timestamp, or for storing secrets that shall be read only once. It is worth analyzing what
is the typical difference between an id and a version. An id is usually data automatically
added by a compiler, calculated using some hash function with input description being
the hash function input. An id primary function is to be a description signature, upon
which it is clear whether two or more descriptions are identical. A version is usually data
manually added by an engineer to indicate what functionalities are supported by a given
bus or block.

The FBDL specification does not require FBDL compilers to add any bus or block ids
automatically. However, at least bus id is extremely useful in practice. It can be used to
ensure that both requester and provider utilize the results of the compilation of the same
bus description. Register with such id must be placed at a fixed, known address, usually
at the beginning or at the end of the generated address space.
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5.11 Status
The status functionality is almost like a status register from the typical register-centric
approach. Almost, because the status functionality abstracts away the limited width of
the register. All advantages of the config functionality (section 5.3) are also valid for the
status functionality. The only difference between the config and the status functionalities
is that in the case of the config, it is the requester that is the only writer, whereas in the
case of the status, it is the provider that is the only writer.

5.12 Stream
The stream functionality represents a stream of data to a provider (downstream) or a
stream of data from a provider (upstream).

Unlike proc, the stream functionality has only one associated signal at the provider
side, the strobe signal. The proc has distinct call and exit signals. However, as the
stream shall have only parameters (downstream) or only returns (upstream), having one
associated signal is enough.
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6 Absent features
The FBDL does not provide some of the popular capabilities present in some of the
register-centric approach tools. This chapter lists the most common ones, and explains
why they are absent. However, their absence does not mean that they will never be
added. At the current stage their disadvantages are clear, but the potential advantages
they might bring are vague.

6.1 Double side writable data
Double side writable data is a data that can be written by both the requester and the
provider (FBDL specification nomenclature). In practice it means data can be written
by both, the firmware/software side and the gateware/hardware side. This is possible in
some of the register-centric tools. For example, SystemRDL refers to this aspect as to
the software and hardware access properties. In the FBDL there is no functionality that
would end up as a data that can be written by both the requester and the provider sides.
There is always one side writing the data and zero, one or two sides reading the data (zero
is possible, although it means that the functionality is unused). This can lead to increased
address space size and resource utilization, however it cuts off all problems related with
designing and debugging systems with multiple data writers. As the resulting increase
of the resource utilization is relatively small (the number of required flip-flops is the
same, only extra logic related with increased address space size is needed), and devices
provide more and more resources every year, it has been decided that this tradeoff is
worth to take. Allowing flip-flops to be written by two sources also increases the resource
utilization, however it does not increase the address space size.

Single side write restriction does not mean that multiple requesters can not write the
same config for example. This means that if the requester side can write some data,
then the provider side must not write this data. The number of requesters allowed to
write is unlimited.

Single side write restriction also does not mean that different data, writable by different
sides, can not be placed in the same physical register (the same register address). Listings
38 and 39 show examples.

Config C and status S occupy exactly half of the register width. As the requester side is
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the writer of config C and the reader of status S, and the provider side is the reader of
config C and the writer of status S, both functionalities can be put into the same register
without any overhead. The required address space size equals 1.

Procedure P has no data, so it needs only address for call triggerring. Status ST occupies
whole register. As the requester side is the writer of procedure P and the reader of status
ST, and the provider side is the reader of procedure P (it reads the call signal) and the
writer of status ST, both functionalities can be put into the same register without any
overhead. The required address space size equals 1.

Main bus
C config; width = 16
S status; width = 16

Listing 38: Example of config and status that can share register address.

Main bus
P proc
ST status

Listing 39: Example of proc and status that can share register address.

6.2 Enumeration type
The first issue with the enumeration type is that the FBDL description is not directly com-
piled into the machine code or synthesized into the digital logic. The FBDL description
is transpiled. In other words, it is compiled to other programming or hardware descrip-
tion languages. However, those other languages do not share a common definition of
the enumeration type. Let’s analyze three, currently very popular, system programming
languages:

1. C - enum type is a list of constant values.

2. Go - no support for any kind of enum type at all.

3. Rust - enum type is actually a union type or a sum type.

One of the goals of the FBDL is to easily add compiler back-ends for target languages.
Extending FBDL with features peculiar for any single target language, or a subset of
target languages, is against this rule. Usually, when speaking about enumeration type
in the context of registers managing, a set of constant possible values is meant. This
is already achievable in FBDL using constant definitions, listing 40. As constants are
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bound to a scope, the values in generated files can also have limited scope. It is also
already possible to limit the set of valid values for some functionalities using the range
property.

# Global constants.
const E = 2.72
const PI = 3.14
const LN2 = 0.69
Main bus

# Shorter form using multi constant definition.
# Below constants are scoped only to the Main bus.
const

ZERO = 0
ONE = 1
TWO = 2

# Range of possible values is limited for below config
# from ZERO to TWO.
c config; range = [ZERO , TWO]

Listing 40: Constraining value range using constants or range property.

The second issue with the enumeration type is the enumeration type values synchroniza-
tion. This is more general issue, not related only with the register management tools.
Let’s suppose enumeration type is a list of constant values (the simplest enum definition).
Figure 6.1 presents an example system design with three actors: firmware, gateware and
software. The enumeration type definitions between actors must be consistent (the same
values for corresponding options).

Figure 6.1: Example system with enumeration types synchronization issue.

There are at least three ways to approach the problem.

1. The FBDL is the source of the enumeration type definitions. The drawback of this
approach is introducing internal depedency on the FBDL output inside firmware,
gateware and software modules. The modules start to not only use the FBDL
output to access or provide the functionalities, but also internally to implement its

69



own logic or data structures. For example, gateware module unit testbench requires
type generation and no longer can be run in isolation.

2. There is a single source of enumeration type definitions, but it is not FBDL. This
approach has three possible implementations, but all them require an extra tool for
updating derived definitions.

(a) Enumeration type definitions are derived from the software/firmware source
code. The drawback is that often different languages are used for prototyping
and for final implementation

(b) Enumeration type definitions are derived from the gateware/hardware descrip-
tion. The hardware description language, once chosen, almost never changes
during the project.

(c) Enumeration type definitions are derived from the dedicated tool with its own
syntax for definitions.

3. Enumeration type definitions are implemented manually for all languages. However,
there is a tool (some kind of a sanitizer) capable of checking that all enumeration
type definitions are coherent. As not all sources are always available in the reposi-
tory the tool would have to support fetching sources via version control systems or
accessing them via URL.

During the work on numerous projects the author has come across most of the mentioned
approaches. As it is not clear that the approach with the register management tool being
the source of the enumeration type definitions has advantages over other approaches it
has been decided that adding support for enumeration type within the language at the
current stage is not sufficiently justified.

6.3 Custom expression functions
The FBDL does not allow defining custom functions for expressions evaluation. This is
possible with all tools providing programming language API for description definition, as
in this case all features of the programming language are „inherited” and can be used
without any limitations. This is very flexible mechanism, but it sometimes leads to
abuses and bus/register management tool starts to be used as a general purpose design
configuration tool storing information not related with the bus or registers. The FBDL’s
goal is to be a bus and register management tool, nothing less nothing more. However,
the FBDL does contains built-in functions (listed in the specification) frequently used for
bus or registers related calculations.
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6.4 Manual addressing
Some of the register-centric tools allow manual register addressing. Manual addressing is
setting register address explicitly. Placing some data at fixed address might be useful in
case of bus identification or blocks versioning.

The FBDL does not allow manual addressing because of two reasons. The first one is that
in FBDL user does not define registers, but data with its functionality type. This of course
does not imply any implementation blockers for manual addressing support, as the address
in such case could be the start address of the data. However, manual addressing simply
does not fit into the FBDL paradigm. The second reason is that any decent compiler
should automatically insert bus identification number at some fixed address. Placing
single data, with unique value, at fixed address is enough to unambiguously identify
address map. Based on this information the firmware or software can load appropriate
address map code and access any data, for example blocks versions, even if its address
differs between versions. In such a case supporting manual addressing does not solve any
problems, but increases the complexity of registerification algorithms.

6.5 Custom attributes
SystemRDL allows for defining custom properties. Such mechanism can be useful for
tuning the compiler behavior. On the other hand, it opens a space for inconsistency
between compilers as they are free to ignore unknown custom properties. The FBDL
does not support custom properties at the current stage, but it reserves a syntax and
terminology. The term „attributes” will be used for custom properties if they are ever
supported. Custom attributes will be assigned the same way the properties are assigned,
but the attribute names will be prepended with the ’@’ (at sign) character, listing 41
presents an example.

Main bus
@addressing -mode = "Compact"

Listing 41: Syntax reserved for custom attributes.

It is worth mentioning that compiler behavior can be tunable even without custom at-
tributes using additional compiler parameters. The FBDL specification is also open to
add more properties if their existence is justified enough.
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7 Implementation
This chapter describes the implementation of the proof of the concept compiler for the
FBDL. As the comprehensive description would be relatively long and would include
aspects irrelevant from the thesis point of view, the chapter describes only the overall
structure and focuses on some general details that probably any FBDL-compliant compiler
will have to face.

The compiler has been divided into two parts, the front-end [80] and the back-end [81],
both are publicly available. The front-end is responsible for reading FBDL description
files, parsing them, instantiating functionalities, and carrying out the registerification
process, all according to the FBDL specification. The back-end is responsible for taking
the registerification result and generating the desired target code. The decision to divide
the compiler into the front-end and back-end has been driven by two factors.

1. Regardless of the target, the parsing, instantiating, and registerification phases
must be carried out for any compiler. However, what is later done with the reg-
isterification results for a particular target highly depends on the target itself. A
Python interface with dynamic loading of address maps and asynchronous access
has a completely different code structure than for example, C module with a stat-
ically compiled address map and synchronous access. The border between what is
common and what depends on the target is quite straightforward, and splitting the
compiler into the front-end and back-end feels quite natural.

2. If the compiler was monolithic and it was released with any restrictive license, for
example, GPL-3.0, then it would not be possible to incorporate it into proprietary,
closed-source programs directly. If the compiler was monolithic and it was released
with any permissive license, for example, MIT, then anyone would be able to take
it as is and fix bugs or implement improvements without even reporting it. The
modular structure of the compiler is a compromise. Any changes applied by a third
party to the front-end must be reported. However, it is still possible to write a
closed-source back-end. In such a case, the closed-source back-end must call front-
end as an external program and dump registerification result to a JSON file. The
JSON file can then be read by the back-end.

Figure 7.1 presents the current (at the time of dissertation writing) structure of the
implemented compiler. Input .fbd files are parsed in parallel by the parser module.

72



Both instantiation and registerification modules run internally in a sequential manner.
Generators for different targets are run in parallel if a user asks for multiple outputs in
a single call. What is more, if code for a given target is placed in multiple files, then the
files are also generated in parallel.

Figure 7.1: Current structure of the implemented compiler.

7.1 Front-end
The front-end of the compiler is responsible for processing everything defined in the FBDL
specification except the access means, as they highly depend on the target. It is internally
built of three stages: parsing, instantiation, and registerification.
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7.1.1 Parsing
The parsing stage is responsible for building abstract syntax trees for description within
files. As there are no inter-file dependencies during the parsing stage, it is easy to run
this stage in parallel (true parallelism). The parser has been generated using the tree-
sitter tool [82]. The defined grammar is available online [83]. Tree-sitter is a parser
generator tool based on the GLR [84] parsing algorithm working most efficiently with a
class of context-free grammars. It allows for very rapid prototyping, but it is not free
of drawbacks. The main one is error handling. If the syntax provided by the user is
not valid, then giving informative feedback to a user on what exactly is wrong requires
relatively more work than in the case of a hand-written custom parser, or sometimes is
even impossible.

7.1.2 Instantiation
The instantiation stage is responsible for instantiating functionalities starting from the
Main bus description. As the type parametrization is resolved at this stage, it is not
truly parallel. There are two possible approaches. The first one is to run this stage
sequentially. The sequential approach is simpler to implement. The second one is to run
the instantiation stage in parallel. The parallel approach is harder to implement. What
is more, it requires more data copying internally, as each instantiation worker might have
different values of type arguments in different scopes. The proof of the concept compiler
implements the instantiation stage in the sequential manner. The whole compilation
process is relatively short. A bus with up to 40 functionalities takes less than 10 ms to
compile (both front-end + back-end) on a platform with Intel i7-8750H CPU. The gain
from the parallel instantiation would not be worth the extra complexity added to the
code.

7.1.3 Registerification
The registerification stage is responsible for putting functionalities into the actual regis-
ters. This stage includes assigning data bit masks, register addresses, block addresses,
and masks, as well as access types. The registerification stage is relatively hard to be
implemented in parallel, as it requires determinism. The registerification algorithms must
be deterministic because, in the case of non-determinism, registerification of the same
bus may lead to different register layout and performance. Although such behavior is not
forbidden by the specification, it is highly impractical. What is more, the registerification
stage has sequential nature. To optimize generated address space size, it is required to
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put functionalities (if possible) into the gaps created during the registerification of other
functionalities. This implies data dependency in the registerification algorithm.

Access types

During the registerification stage, it must be determined how the data of the functionality
must be accessed. The access types are not defined in the specification, so each compiler is
free to adopt its policy. For example, a compiler highly optimized for AXI byte addressing
will probably implement different access types than some generic multi-target compiler
supporting both byte and word addressing.

The implemented compiler has five access types:

1. Single Single

2. Single Continuous

3. Array Single

4. Array Continuous

5. Array Multiple

The Single Single access type is the simplest access type used for single data fitting a
single register. Listing 42 presents a description with three data of Single Single access
type, and figure 7.2 presents an example register layout. The Single Single access type
requires address and mask (start bit and end bit) attributes to unambiguously describe
how to access the data.

Main bus
C config; width = 12
S0 status; width = 20
S1 status

Listing 42: Example bus with three data of Single Single access type.

Figure 7.2: Example register layout of data of Single Single access type.

The Single Continuous access type is used to describe the access to data spanning multiple
adjacent registers. Listing 43 presents a description with two data of Single Continuous
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access type, and figure 7.3 presents an example register layout. The Single Continuous
access type requires start address, start bit, and width attributes to describe how to access
the data unambiguously.

Main bus
S0 status; width = 87
S1 status; width = 41

Listing 43: Example bus with two data of Single Continuous access type.

Figure 7.3: Example register layout of data of Single Continuous access type.

The Array Single access type is used to describe access to array data with a single element
placed within a single register. Listing 44 presents a description with one array data of
Array Single access type, and figure 7.4 presents an example register layout. The Array
Single access type requires start address, mask (start bit and end bit), and elements count
to unambiguously describe how to access the data.

Main bus
S [3]status; width = 24

Listing 44: Example bus with one data of Array Single access type.

Figure 7.4: Example register layout of data of Array Single access type.

The Array Continuous access type is used to describe access to array data with elements
placed adjacent to each other even if the gap in the register is narrower than the single
element width. Listing 45 presents a description with two array data of Array Continuous
access type, and figure 7.5 presents an example register layout. S0 is two-element array
data with single element width greater than the register width. S1 is four-element array
data with single element width smaller than the register width. The Array Continuous
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Main bus
S0 [2]status; width = 40
S1 [4]status; width = 12

Listing 45: Example bus with two data of Array Continuous access type.

Figure 7.5: Example register layout of data of Array Continuous access type.

access type requires start address, start bit, and elements count to describe how to access
the data unambiguously.

The Array Multiple access type is used to describe access to array data with multiple
elements placed in one register. Listing 46 presents a description with two array data of
Array Multiple access type, and figure 7.6 presents an example register layout. S0 is six-
element array data with single element width being the divisor of the reigster width. S1
is five-element array data with single element width not being the divisor of the register
width. The Array Multiple access type requires start address, start bit, element width,
and elements count to describe how to access the data unambiguously.

Main bus
S0 [6]status; width = 16
S1 [5]status; width = 9

Listing 46: Example bus with two data of Array Multiple access type.
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Figure 7.6: Example register layout of data of Array Multiple access type.

Registerification algorithm

The only registerification algorithm requirement imposed by the specification is determin-
ism. A compiler must produce the same registerification result when run multiple times
with exactly the same input and arguments. Everything else related to the registerifica-
tion algorithm is up to a compiler. A single compiler may provide multiple registerification
algorithms configurable, for example, via command line parameter.

Although a compiler has freedom in terms of the registerification algorithm, there are
some general recommendations that, when followed, ease the implementation. The below
recommendations work when functionalities are registerified one by one. That is, once
picked, the functionality is ultimately registerified with its final hardware address. They
might not be valid in the case of more sophisticated algorithms, for example, when procs,
streams, and groups are first registerified internally and later organized in a sequence
optimizing generated address space sizes. Some of the recommendations with greater
indexes assume that some recommendations with lower indexes are met.

1. If the minimum number of registers for storing single functionality equals N (N =

ceil(functionality width/bus width)), then this functionality should be placed into
N registers. Theoretically, putting it into M (M > N) registers can save some
address space if enough gaps exist. However, as the compiler knows nothing about
the access interface during the compilation, an artificial increase of the number of
registers needed for functionality can greatly increase the access time if the access
interface does not support block transactions or if gaps are not placed in consecutive
registers. A small address space size decrease is usually not worth an access time
increase in such cases, as the round trip latency in some cases might be significant.

2. Proc and stream are encapsulated functionalities. Params and returns can always
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be aligned to each other if params are not readable. The gaps are possible only
at the edges. The call register (or downstream strobe register) must not have any
external writable functionality such as config or mask as the write generates the
call strobe. If proc params are readable, the exit register must not have any proc
params. Moreover, the exit register must not have any functionality not belonging
to the proc. This is because the read generates an exit pulse, and all functionalities
in such a case are readable. As the specification does not impose whether proc
params are readable, it depends on the compiler implementation. If the compiler
does not allow param read, then it is safe to put proc params in the exit register.
In such a case, the params might belong to the same proc or to another one, but
all of them must belong to the same proc. To sum up, a gap after proc or stream
registerification is created only when:

(a) Proc has only params, or stream is downstream, and the sum of param widths
is not multiples of the register width. Such a gap can be filled with functionality
that is read-only, for example, static or status. If params cannot be read, then
it is also safe to fill the gap with irq (if it is cleared on read) or proc with only
returns or upstream. If params can be read, then it is also safe to fill the gap
with returns if it will not create an exit or strobe register.

(b) Proc exit register is pure, or stream is upstream, and params are not readable.
In such case, it is safe to place proc or stream params in the exit register of
another proc or strobe register of another stream.

3. Array functionalities should be registerified before single functionalities. It is eas-
ier to place single functionalities in the gaps created during array functionalities
registerification than the reverse way.

4. Groups (functionalities belonging to groups) should be registerified before func-
tionalities without groups. This is because groups impose relative placement of
functionalities.

5. The order of groups registerification and the order of functionalities registerification
within the groups are separate, orthogonal issues. The implementation should not
introduce unnecessary dependency.

6. Single and array functionalities should be sorted before registerification. Wider
functionalities should be registerified as the first ones. For example, lets consider
bus description from listing 47. The proc P being encapsulated functionality is
registerified as the first one. It leaves a 12-bits gap. If statuses are registerified in
the appearance order, then 3 registers are needed. This is shown in figure 7.7.
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Main bus
P proc

p param; width = 20
S0 status; width = 4
S1 status; width = 12
S2 status; width = 28

Listing 47: Bus description presenting sorting effect on registerification result.

Figure 7.7: Register layout without functionality sorting.

However, if functionalities are first sorted in width decreasing order, then only 2
registers are needed. This is shown in figure 7.8.

Figure 7.8: Register layout with functionality sorting.

This recommendation does not apply to single functionalities wider than the bus
width. Such a case is more complicated as the optimal registerification depends
also on the access atomicity. One possible implementation is to take the widest
functionality and check if it can fulfill the last gap. If not, then simply registerify
it starting from the next address. This approach is very simple to implement.
However, it is not optimal in terms of the generated address space size.

7. Writable functionalities, such as config or mask, should be registerified before read-
only functionalities, such as status and static. This is because read-only function-
alities are very flexible. They can be placed in almost any gap. For example, let’s
consider bus description from listing 48. If statuses are registerified before configs,

Main bus
S0 status; width = 16
S1 status; width = 10
C0 config; width = 16
C1 config; width = 10

Listing 48: Bus description presenting registerification order change.
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then 3 registers are required. This is shown in figure 7.9.

Figure 7.9: Register layout for status -> config order.

If configs are registerified before statuses, then 2 registers are required. This is
shown in figure 7.10.

Figure 7.10: Register layout for config -> status order.

7.2 Back-end
The back-end of the compiler is responsible for generating code for a particular target.
It must generate the means required to access the functionalities. As there is no inter-
dependency between code generated for different targets, it is easy to run target code
generation in parallel for multiple targets.

The architecture and design of the code generated for the target highly depend on the
overall system requirements. Access to the data can be implemented in a synchronous
or asynchronous fashion. Asynchronous code is conceptually harder to generate and use
but potentially (if done right) improves system performance. The generated target code
can load the address map statically or dynamically. Dynamic loading of address map is
harder to implement but can be very useful when working with multiple versions of the
same description or with various devices with entirely different buses. In the case of dy-
namic address map loading, there is no need to regenerate the target code and potentially
recompile the code, as dynamic loading requires only the registerification results. The
target language also is an important factor. Generating code for dynamic, weakly typed
languages (e.g. Python, Perl, Lua) is generally a simpler task than generating code for
compiled, strongly-typed languages (e.g. Ada, C, Rust).

Figure 7.11 presents a simplified connection scheme of a system utilizing FBDL. It shows
two modules within the requester and the provider, but an even more elementary design
with a single module is possible. However, what is more important is the fact that
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Figure 7.11: Simplified connection scheme of a system utilizing FBDL.

automatically generated code has to be connected with the access interface. The access
interface code can also be generated by the compiler, but it not recommended approach
because of at least two reasons. The first one is that FBDL does not specify anything about
the access interface, so keeping it out of the compiler keeps the whole design architecture
cleaner. The second one is that in case of extending the interface or replacing it with
another one, for example, to improve performance, there is no need to regenerate the
code or recompile the compiler.

In theory a functionally complete access interface requires only two functions:

1. read,

2. write.

However, single read and single write functions may not be sufficient in a system having
rigid performance requirements. Frequently carried transactions are block read and block
write, as well as accessing register with the same address multiple times (often called
cyclic/fixed read/write or constant address read/write), for example, to read a FIFO. A
slightly enhanced access interface should also provide distinct functions for:

1. block read,

2. block write,

3. cyclic read,

4. cyclic write.

In more complex systems, there also may be a need for vectored (scatter/gather) IO. In
such a case, the access interface should also provide distinct functions for:

1. vectored read,

2. vectored write.

In the case of the most performance-demanding systems, there also might be a need for
cyclic block (also called wrapped transactions) and cyclic vectored transactions.
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In practice, a functionally complete access interface requires the following twelve func-
tions:

1. read - single register read,

2. write - single register write,

3. cread - cyclic (fixed) read,

4. cwrite - cyclic (fixed) write,

5. readb - block read,

6. writeb - block write,

7. creadb - cyclic block read (wrapped read),

8. cwriteb - cyclic block write (wrapped write),

9. readv - vectored (scatter/gather) read,

10. writev - vectored (scatter/gather) write,

11. creadv - cyclic vectored (scatter/gather) read,

12. cwritev - cyclic vectored (scatter gather) write.

The list proposes names for particular transactions. As the names for vectored operations
(readv, writev) are already defined in the POSIX standard, it makes sense to extend this
naming convention further. This implies that the type of the operation is indicated by the
single character suffix, b for block and v for vectored. Single read (read) and single write
(write) do not have any suffixes, as this is common practice. Whether the transaction is
cyclic is indicated by the single letter prefix (c).

The access interface does not have to provide all of the transactions, and even if it does, the
last ten of them can be implemented on top of the read and write. In such a case, there
will not be any performance gain, but the programming interface will be easier to use,
as there will be no need to implement these functions manually. It is worth mentioning,
that the performance of the access interface can be improved step by step only when
necessary. For example, in the project’s initial phase, the readb/writeb can be internally
implemented as a loop of read/write calls. If, in a later phase, the performance of the
block transactions becomes a bottleneck of the system, a true block access can be added
to the interface internal implementation. The access interface can also be completely
reworked or replaced at any phase of the project, and this will not result in any changes
in the bus description. In other words, the bus description and the access interface are
entirely independent.
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There is also one more transaction type frequently found in access interfaces, the rmw
(read-modify-write) transaction. The rmw is an atomic operation typically used to imple-
ment synchronization mechanisms or to reduce the round-trip latency. For example, if
the provider supports rmw internally, the round-trip of remote access is cut by half, or
even more if the requester does not care about the acknowledgment. Figure 7.12 presents
sequence diagrams for rmw transaction without and with provider support for rmw. The
last acknowledgment message may be ignored if the requester does not care whether the
operation succeded or failed.

Figure 7.12: Sequence diagrams for rmw transaction without and with provider support
for rmw.

The rmw transaction at the provider side can be implemented in two ways. In the first way,
the rmw transaction is part of the bus protocol and is supported by the main bus master.
This way provides the lowest possible latency for the rmw. In the second way, there is
an extra, dedicated master offering rmw implemented as an FBDL procedure. Listing 49
presents an example RMW procedure described in FBDL. In real use cases, the widths
of parameters depend on actual bus architecture. All remaining functionalities have been
removed for brevity.

Figure 7.13 shows an example bus structure with an extra master providing rmw transac-
tion support. Such a design has higher rmw transaction latency than a design with rmw
transaction supported directly by the primary master, as the primary master has to first
write rmw parameters in the extra master. However, the overall rmw latency is still much
lower than in the case when the provider does not support rmw transaction at all.
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Main bus
RMW proc

addr param
operation_type param
data param
data_mask param

Listing 49: Example read-modify-write FBDL procedure.

Figure 7.13: Example bus structure with extra master providing rmw transaction support.
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8 Real use case
The implemented FBDL compiler has been used during the development of the delay
generator module for femtosecond laser implemented as a part of the „Development of
optical engine for rapid laser fabrication of transparent materials” (Eurostars-2) project
carried out by the Fluence SP. Z O. O. The objective of the project was the development
of a beam delivery module containing an optical Pancharatnam-Berry phase element
and a laser equipped with precise pulse-on-demand synchronization for high-speed laser
processing of transparent materials.

Due to the proprietary nature of the project, no internal details can be revealed. However,
appendix C contains the statement from the Fluence company confirming the use of the
FBDL compiler.
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9 Summary
Describing system bus at the functional level using FBDL offers the following advantages
compared to the typical register-centric approach:

1. Shorter development time, as more code can be automatically generated.

2. More readable and maintainable project structure. As FBDL is more strongly typed
than the typical register-centric approach the description itself contains more infor-
mation about the system. There is no need to read gateware, firmware, or software
code to get to know that a certain set of registers form a broader context and are
dependent (procedures and streams).

3. No space for invalid access order bugs. Code for writing parameters or reading
returns of procedures and streams is automatically generated so the register with
the associated strobe or acknowledgment signal is always accessed as the last one.

4. Less probability of non-atomic data access bugs. In FBDL access to any data
is atomic by default. Any compiler claiming compliance with the FBDL specifi-
cation must guarantee that the generated gateware or hardware provides atomic
data access by default. Non-atomicity is an opt-out feature, achieved with explicit
atomic = false property assignment.

5. Uniform data access interface across different target languages. The FBDL specifi-
cation states what kind of accesses must be generated for particular functionalities.
This eliminates scenarios where the generated C code provides information on ad-
dresses, masks, and shifts, but for example, the generated Python or C++ code
abstracts this information by providing direct operations on registers and bit fields.
The abstraction level of the code generated by the FBDL compiler is the same
regardless of the target language and is always at the functionality level.

The FBDL may also be used in the case of on-chip connections utilizing the NoC technol-
ogy. As each node of the network has to distribute data within its borders, the traditional
bus architectures are still used for this purpose. In such a design, the FBDL may be used
to describe the functionality of particular buses of nodes. The routing algorithm and
access interfaces are then implemented independently and are only hooked to the code
generated by an FBDL compiler.

87



Bibliography
[1] T. Ablyazimov, “Challenges in QCD matter physics –The scientific programme

of the Compressed Baryonic Matter experiment at FAIR,” The European
Physical Journal A, vol. 53, no. 3, p. 60, Mar. 2017. [Online]. Available:
https://doi.org/10.1140/epja/i2017-12248-y

[2] “Compressed Baryonic Matter experiment,” Accessed: 2023-10-01. [Online].
Available: https://www.gsi.de//work/forschung/cbmnqm/cbm.htm

[3] W. M. Zabołotny, M. Gumiński, M. Kruszewski, and W. F. Müller, “Control
and diagnostics system generator for complex fpga-based measurement systems,”
Sensors, vol. 21, no. 21, 2021. [Online]. Available: https://www.mdpi.com/
1424-8220/21/21/7378

[4] ARM, “AMBA AXI and ACE Protocol Specification,” Accessed: 2021-06-03.
[Online]. Available: https://developer.arm.com/documentation/ihi0022/latest/

[5] OpenCores, “WISHBONE System-on-Chip (SoC)Interconnection Architecturefor
Portable IP Cores,” Accessed: 2021-06-03. [Online]. Available: https://cdn.
opencores.org/downloads/wbspec_b4.pdf

[6] G. De Michell and R. Gupta, “Hardware/software co-design,” Proceedings of the
IEEE, vol. 85, no. 3, pp. 349–365, Mar. 1997, Conference Name: Proceedings of the
IEEE.

[7] J. Takalo, J. Kääriäinen, P. Parviainen, and T. Ihme, “Challenges of software-
hardware co-design,” VTT WORKING PAPERS, p. 49, 2008.

[8] J. Kokila, N. Ramasubramanian, and S. Indrajeet, “A survey of hardware and soft-
ware co-design issues for system on chip design,” in Advanced Computing and Com-
munication Technologies, R. K. Choudhary, J. K. Mandal, N. Auluck, and H. A.
Nagarajaram, Eds. Singapore: Springer Singapore, 2016, pp. 41–49.

[9] R. Ganesh, “Design issues in hardware/software co-design r. ganesh,” 06 2020.

[10] F. Zhang, High-speed Serial Buses in Embedded Systems. Springer Singapore, 2020.

[11] Intel, “Isa bus specification and application notes,” Accessed: 2023-03-14. [Online].
Available: https://archive.org/details/bitsavers_intelbusSpep89_3342148/mode/
2up

88

https://doi.org/10.1140/epja/i2017-12248-y
https://www.gsi.de//work/forschung/cbmnqm/cbm.htm
https://www.mdpi.com/1424-8220/21/21/7378
https://www.mdpi.com/1424-8220/21/21/7378
https://developer.arm.com/documentation/ihi0022/latest/
https://cdn.opencores.org/downloads/wbspec_b4.pdf
https://cdn.opencores.org/downloads/wbspec_b4.pdf
https://archive.org/details/bitsavers_intelbusSpep89_3342148/mode/2up
https://archive.org/details/bitsavers_intelbusSpep89_3342148/mode/2up


[12] “Extended industry standard architecture (eisa) specification 3.1,” Accessed:
2023-03-14. [Online]. Available: https://www.os2museum.com/files/docs/EISA_
Specification-v3.1.pdf

[13] T. Time, “Micro channel bus tutorial,” Accessed: 2023-03-14. [Online]. Available:
https://github.com/schlae/mca-tutorial

[14] Infotel, “Vesa local bus 3486, 786 mini-board user’s manual,” Accessed:
2023-03-14. [Online]. Available: https://theretroweb.com/motherboard/manual/
vlbus3486-61e8755ab7989037625802.pdf

[15] A. N. S. Institute, “Small computer system interface-2,” Accessed: 2023-03-
14. [Online]. Available: https://global.ihs.com/doc_detail.cfm?document_name=
ANSI%20INCITS%20131&item_s_key=00009673&item_key_date=911231

[16] Hewlett-Packard, Intel, Microsoft, Renesas, ST-Ericsson, and T. Instruments,
“Universal serial bus 3.1 specification,” Accessed: 2023-03-14. [Online]. Available:
https://manuais.iessanclemente.net/images/b/bc/USB_3_1_r1.0.pdf

[17] P. SIG, “Pci specifications,” Accessed: 2023-03-14. [Online]. Available: https:
//pcisig.com/specifications

[18] S. Pasricha and N. Dutt, On-Chip Communication Architectures. Elsevier, 2008.

[19] J. Bainbridge, Asynchronous System-on-Chip Interconnect. Springer London, 2002.

[20] I. Microelectronics, “Coreconnect bus architecture,” Accessed: 2023-03-14. [Online].
Available: https://www.xilinx.com/content/dam/xilinx/support/documents/user_
guides/crcon_pb.pdf

[21] Intel, “Introduction to the avalon interface specifications,” Accessed: 2023-
03-14. [Online]. Available: https://www.intel.com/content/www/us/en/docs/
programmable/683091/20-1/introduction-to-the-interface-specifications.html

[22] STMicroelectronics, “Stbus communication system con-
cepts and definitions,” Accessed: 2023-03-14. [On-
line]. Available: https://www.st.com/resource/en/user_manual/
cd00176920-stbus-communication-system-concepts-and-definitions-stmicroelectronics.
pdf

[23] W. Bainbridge and S. Furber, “Marble: an asynchronous on-chip macrocell bus,”
Microprocessors and Microsystems, vol. 24, no. 4, pp. 213–222, 2000. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0141933100000752

89

https://www.os2museum.com/files/docs/EISA_Specification-v3.1.pdf
https://www.os2museum.com/files/docs/EISA_Specification-v3.1.pdf
https://github.com/schlae/mca-tutorial
https://theretroweb.com/motherboard/manual/vlbus3486-61e8755ab7989037625802.pdf
https://theretroweb.com/motherboard/manual/vlbus3486-61e8755ab7989037625802.pdf
https://global.ihs.com/doc_detail.cfm?document_name=ANSI%20INCITS%20131&item_s_key=00009673&item_key_date=911231
https://global.ihs.com/doc_detail.cfm?document_name=ANSI%20INCITS%20131&item_s_key=00009673&item_key_date=911231
https://manuais.iessanclemente.net/images/b/bc/USB_3_1_r1.0.pdf
https://pcisig.com/specifications
https://pcisig.com/specifications
https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/crcon_pb.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/crcon_pb.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html
https://www.st.com/resource/en/user_manual/cd00176920-stbus-communication-system-concepts-and-definitions-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/cd00176920-stbus-communication-system-concepts-and-definitions-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/cd00176920-stbus-communication-system-concepts-and-definitions-stmicroelectronics.pdf
https://www.sciencedirect.com/science/article/pii/S0141933100000752


[24] ARM, “Amba axi-stream protocol specification,” Accessed: 2023-04-10. [Online].
Available: https://developer.arm.com/documentation/ihi0051/latest/

[25] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched in-
terconnections,” in Proceedings Design, Automation and Test in Europe Conference
and Exhibition 2000 (Cat. No. PR00537), 2000, pp. 250–256.

[26] W. Dally and B. Towles, “Route packets, not wires: on-chip interconnection net-
works,” in Proceedings of the 38th Design Automation Conference (IEEE Cat.
No.01CH37232), 2001, pp. 684–689.

[27] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,” Computer,
vol. 35, no. 1, pp. 70–78, 2002.

[28] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tien-
syrja, and A. Hemani, “A network on chip architecture and design methodology,” in
Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms
for VLSI Systems Design. ISVLSI 2002, 2002, pp. 117–124.

[29] A. Xilinx, “Axi adapter interface protocols,” Accessed: 2023-03-
12. [Online]. Available: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/
AXI-Adapter-Interface-Protocols

[30] J. Chen, P. Gillard, and C. Li, “Network-on-chip (noc) topologies and performance:
A review,” 2011.

[31] T. N. Kamal Reddy, A. K. Swain, J. K. Singh, and K. K. Mahapatra, “Performance
assessment of different network-on-chip topologies,” in 2014 2nd International Con-
ference on Devices, Circuits and Systems (ICDCS), 2014, pp. 1–5.

[32] H. J. Mahanta, A. Biswas, and M. A. Hussain, “Networks on chip: The new trend
of on-chip interconnection,” in 2014 Fourth International Conference on Communi-
cation Systems and Network Technologies, 2014, pp. 1050–1053.

[33] A. Kalita, K. Ray, A. Biswas, and M. A. Hussain, “A topology for network-on-chip,”
in 2016 International Conference on Information Communication and Embedded
Systems (ICICES), 2016, pp. 1–7.

[34] A. Kumar, S. Tyagi, and C. K. Jha, “Performance analysis of network-on-chip
topologies,” Journal of Information and Optimization Sciences, vol. 38, no. 6, pp.
989–997, 2017. [Online]. Available: https://doi.org/10.1080/02522667.2017.1372145

[35] I. A. Alimi, R. K. Patel, O. Aboderin, A. M. Abdalla, R. A. Gbadamosi, N. J.
Muga, A. N. Pinto, and A. L. Teixeira, “Network-on-chip topologies: Potentials,

90

https://developer.arm.com/documentation/ihi0051/latest/
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI-Adapter-Interface-Protocols
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI-Adapter-Interface-Protocols
https://doi.org/10.1080/02522667.2017.1372145


technical challenges, recent advances and research direction,” in Network-on-Chip,
I. A. Alimi, O. Aboderin, N. J. Muga, and A. L. Teixeira, Eds. Rijeka: IntechOpen,
2021, ch. 3. [Online]. Available: https://doi.org/10.5772/intechopen.97262

[36] I. E. T. Force, “Internet Protocol,” Internet Engineering Task Force, Request
for Comments RFC 791, Sep. 1981, Num Pages: 51. [Online]. Available:
https://datatracker.ietf.org/doc/rfc791

[37] ——, “Transmission Control Protocol,” Internet Engineering Task Force, Request
for Comments RFC 793, Sep. 1981, Num Pages: 91. [Online]. Available:
https://datatracker.ietf.org/doc/rfc793

[38] O. Ben-Kiki, C. Evans, and I. dot Net, “Yaml specification index,” Accessed:
2023-02-18. [Online]. Available: https://yaml.org/spec/

[39] noasic GmbH, “airhdl,” Accessed: 2023-02-18. [Online]. Available: https:
//airhdl.com/#/

[40] “Introducing json,” Accessed: 2023-02-18. [Online]. Available: https://www.json.
org/json-en.html

[41] “Html standard,” Accessed: 2023-02-18. [Online]. Available: https://html.spec.
whatwg.org/

[42] W. W. W. Consortium, “Extensible markup language,” Accessed: 2023-02-18.
[Online]. Available: https://www.w3.org/TR/xml/

[43] W. M. Zabołotny, “Address generator for wishbone,” Accessed: 2023-02-20. [Online].
Available: https://github.com/wzab/agwb

[44] ——, “Adr_gen - automatic address generator,” Accessed: 2023-02-20. [Online].
Available: https://github.com/wzab/wzab-hdl-library/tree/master/addr_gen

[45] D. Gisselquist, “Autofpga,” Accessed: 2023-02-21. [Online]. Available: https:
//github.com/ZipCPU/autofpga

[46] P. Plutecki, B. P. Bielawski, and A. Butterworth, “Code Generation Tools and Editor
for Memory Maps,” Proceedings of the 17th International Conference on Accelerator
and Large Experimental Physics Control Systems, vol. ICALEPCS2019, pp. 4 pages,
0.730 MB, 2020, Artwork Size: 4 pages, 0.730 MB ISBN: 9783954502097 Medium:
PDF Publisher: JACoW Publishing, Geneva, Switzerland. [Online]. Available:
https://jacow.org/icalepcs2019/doi/JACoW-ICALEPCS2019-MOPHA115.html

[47] “cheby,” Accessed: 2023-02-22. [Online]. Available: https://gitlab.cern.ch/
be-cem-edl/common/cheby

91

https://doi.org/10.5772/intechopen.97262
https://datatracker.ietf.org/doc/rfc791
https://datatracker.ietf.org/doc/rfc793
https://yaml.org/spec/
https://airhdl.com/#/
https://airhdl.com/#/
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://www.w3.org/TR/xml/
https://github.com/wzab/agwb
https://github.com/wzab/wzab-hdl-library/tree/master/addr_gen
https://github.com/ZipCPU/autofpga
https://github.com/ZipCPU/autofpga
https://jacow.org/icalepcs2019/doi/JACoW-ICALEPCS2019-MOPHA115.html
https://gitlab.cern.ch/be-cem-edl/common/cheby
https://gitlab.cern.ch/be-cem-edl/common/cheby


[48] A. J. Rey, J. C. Molendijk, F. Dubouchet, A. Pashnin, A. Butterworth, M. Jaussi, and
T. Levens, “Cheburashka: A tool for consistent memory map configuration across
hardware and software,” Oct. 2013, pp. 848–851.

[49] E. Bolnov, “Corsair,” Accessed: 2023-02-24. [Online]. Available: https:
//github.com/esynr3z/corsair

[50] W. M. Zabołotny, M. Gumiński, and M. Kruszewski, “Automatic management of
local bus address space in complex FPGA-implemented hierarchical systems,” in
Photonics Applications in Astronomy, Communications, Industry, and High-Energy
Physics Experiments 2019, R. S. Romaniuk and M. Linczuk, Eds., vol. 11176,
International Society for Optics and Photonics. SPIE, 2019, p. 1117642. [Online].
Available: https://doi.org/10.1117/12.2536259

[51] L. Vik, “hdl_registers: An open-source HDL register generator fast enough
to run in real time,” Accessed: 2023-02-17. [Online]. Available: https:
//hdl-registers.com/index.html

[52] K. T. Pozniak, “I/O communication with FPGA circuits and hardware description
standard for applications in HEP and FEL electronics.” [Online]. Available:
https://romaniuk.web.cern.ch/public-files/TESLA/tesla2005-22.pdf

[53] “Deutsches elektronen-synchrotron,” Aug. 2012.

[54] P. Drabik and K. T. Pozniak, “Maintaining complex and distributed measurement
systems with component internal interface framework,” in Proc. SPIE, R. S.
Romaniuk and K. S. Kulpa, Eds., vol. 7502, Wilga, Poland, Jun. 2009, p. 75022C.
[Online]. Available: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=
10.1117/12.838155

[55] A. Zagoździńska, K. T. Poźniak, and P. K. Drabik, “Selected issues of the
universal communication environment implementation for CII standard,” R. S.
Romaniuk, Ed., Wilga, Poland, Jun. 2011, p. 80080N. [Online]. Available:
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.902748

[56] “1685-2014 - IEEE Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows.” [Online]. Available: https:
//ieeexplore.ieee.org/document/6898803

[57] A. I.-X. W. Group, “Ip-xact user guide,” Accessed: 2023-02-24. [Online]. Avail-
able: https://www.accellera.org/images/downloads/standards/ip-xact/IP-XACT_
User_Guide_2018-02-16.pdf

92

https://github.com/esynr3z/corsair
https://github.com/esynr3z/corsair
https://doi.org/10.1117/12.2536259
https://hdl-registers.com/index.html
https://hdl-registers.com/index.html
https://romaniuk.web.cern.ch/public-files/TESLA/tesla2005-22.pdf
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.838155
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.838155
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.902748
https://ieeexplore.ieee.org/document/6898803
https://ieeexplore.ieee.org/document/6898803
https://www.accellera.org/images/downloads/standards/ip-xact/IP-XACT_User_Guide_2018-02-16.pdf
https://www.accellera.org/images/downloads/standards/ip-xact/IP-XACT_User_Guide_2018-02-16.pdf


[58] T. Timi, “rgen,” Accessed: 2023-02-24. [Online]. Available: https://github.com/
tudortimi/rgen

[59] O. Balci, “Ipxact register map generator,” Accessed: 2023-02-24. [Online]. Available:
https://github.com/legoritma/ipxact-register-generator

[60] A. Kamppi, L. Matilainen, J. M. Maatta, E. Salminen, T. D. Hamalainen, and
M. Hannikainen, “Kactus2: Environment for embedded product development using
ip-xact and mcapi,” in Digital System Design (DSD), 2011 14th Euromicro Confer-
ence on, Aug 2011, pp. 262–265.

[61] F. Miller, “Root-of-trust-architekturen als open-source-hardware und deren zerti-
fizierung: am beispiel von opentitan,” Datenschutz und Datensicherheit, vol. 44,
no. 7, pp. 451–455, 2020.

[62] “Opentitan,” Accessed: 2023-02-22. [Online]. Available: https://docs.opentitan.org/

[63] “Opentitan register tool,” Accessed: 2023-02-22. [Online]. Available: https:
//docs.opentitan.org/doc/rm/register_tool/

[64] bitvis, “Register wizard abandoned,” Accessed: 2023-02-24. [Online]. Available:
https://github.com/UVVM/UVVM/issues/200

[65] E. Tallaksen, “Auto-generate register related code and documentation - for
free,” Accessed: 2023-02-24. [Online]. Available: https://www.linkedin.com/pulse/
auto-generate-register-related-code-doc-free-espen-tallaksen/

[66] bitvis, “Verifying corner cases in a structured manner - using vhdl verification
components,” Accessed: 2023-02-24. [Online]. Available: http://program.fpgaworld.
com/2016/More_information/Bitvis__Verifying_CornerCases_Handout.pdf

[67] T. Ishitani, “Rggen,” Accessed: 2023-02-16. [Online]. Available: https:
//github.com/rggen/rggen

[68] A. Chapyzhenka, “Design � hardware,” Accessed: 2023-02-16. [Online]. Available:
https://github.com/sifive/duh

[69] accellera SYSTEMS INITIATIVE, “Systemrdl,” Accessed: 2023-02-18. [Online].
Available: https://www.accellera.org/downloads/standards/systemrdl

[70] AGNISYS, “Next generation systemrdl - using idesignspec for register implemen-
tation,” Accessed: 2023-02-16. [Online]. Available: https://www.agnisys.com/blog/
next-generation-systemrdl-using-idesignspec-for-register-implementation

93

https://github.com/tudortimi/rgen
https://github.com/tudortimi/rgen
https://github.com/legoritma/ipxact-register-generator
https://docs.opentitan.org/
https://docs.opentitan.org/doc/rm/register_tool/
https://docs.opentitan.org/doc/rm/register_tool/
https://github.com/UVVM/UVVM/issues/200
https://www.linkedin.com/pulse/auto-generate-register-related-code-doc-free-espen-tallaksen/
https://www.linkedin.com/pulse/auto-generate-register-related-code-doc-free-espen-tallaksen/
http://program.fpgaworld.com/2016/More_information/Bitvis__Verifying_CornerCases_Handout.pdf
http://program.fpgaworld.com/2016/More_information/Bitvis__Verifying_CornerCases_Handout.pdf
https://github.com/rggen/rggen
https://github.com/rggen/rggen
https://github.com/sifive/duh
https://www.accellera.org/downloads/standards/systemrdl
https://www.agnisys.com/blog/next-generation-systemrdl-using-idesignspec-for-register-implementation
https://www.agnisys.com/blog/next-generation-systemrdl-using-idesignspec-for-register-implementation


[71] eVision Systems, “Idesignspec,” Accessed: 2023-02-16. [Online]. Available:
https://evision-systems.com/linecard/agnisys/idesignspec/

[72] Semifore, “Csrcompiler,” Accessed: 2023-02-16. [Online]. Available: http:
//semifore.com/csrcompiler/

[73] Juniper, “open-register-design-tool,” Accessed: 2023-02-16. [Online]. Available:
https://github.com/Juniper/open-register-design-tool

[74] S. open source community, “Free and open-source systemrdl tools,” Accessed:
2023-02-16. [Online]. Available: https://github.com/SystemRDL

[75] M. Buechler, “desyrdl,” Accessed: 2023-02-16. [Online]. Available: https:
//gitlab.desy.de/fpgafw/tools/desyrdl

[76] J. van Straten, “vhdmmio,” Accessed: 2023-03-23. [Online]. Available: https:
//github.com/abs-tudelft/vhdmmio

[77] T. Włostowski, “Wishbone slave generator,” Accessed: 2023-02-16. [Online].
Available: https://ohwr.org/project/wishbone-gen

[78] A. Xilinx, “Super logic region,” Accessed: 2023-03-12. [Online]. Available:
https://docs.xilinx.com/r/en-US/ug912-vivado-properties/SLR

[79] “Ieee standard glossary of software engineering terminology,” IEEE Std 610.12-1990,
pp. 1–84, 1990.

[80] M. Kruszewski, “go-fbdl,” Accessed: 2023-04-14. [Online]. Available: https:
//github.com/Functional-Bus-Description-Language/go-fbdl

[81] ——, “go-vfbdb,” Accessed: 2023-04-14. [Online]. Available: https://github.com/
Functional-Bus-Description-Language/go-vfbdb

[82] M. Brunsfeld, A. Hlynskyi, P. Thomson, J. Vera, P. Turnbull, T. Clem, D. Creager,
A. Helwer, R. Rix, H. van Antwerpen, M. Davis, Ika, T.-A. Nguyễn, S. Brunk,
N. Hasabnis, bfredl, M. Dong, M. Massicotte, J. Arnett, V. Panteleev, S. Kalt,
K. Lampe, A. Pinkus, M. Schmitz, M. Krupcale, narpfel, S. Gallegos, V. Martí,
and Edgar, “tree-sitter/tree-sitter: v0.20.8,” Apr. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7798573

[83] M. Kruszewski, “tree-sitter-fbdl,” Accessed: 2023-04-13. [Online]. Available:
https://github.com/Functional-Bus-Description-Language/tree-sitter-fbdl

[84] M. Tomita, Ed., Generalized LR Parsing. Boston, MA: Springer US, 1991. [Online].
Available: http://link.springer.com/10.1007/978-1-4615-4034-2

94

https://evision-systems.com/linecard/agnisys/idesignspec/
http://semifore.com/csrcompiler/
http://semifore.com/csrcompiler/
https://github.com/Juniper/open-register-design-tool
https://github.com/SystemRDL
https://gitlab.desy.de/fpgafw/tools/desyrdl
https://gitlab.desy.de/fpgafw/tools/desyrdl
https://github.com/abs-tudelft/vhdmmio
https://github.com/abs-tudelft/vhdmmio
https://ohwr.org/project/wishbone-gen
https://docs.xilinx.com/r/en-US/ug912-vivado-properties/SLR
https://github.com/Functional-Bus-Description-Language/go-fbdl
https://github.com/Functional-Bus-Description-Language/go-fbdl
https://github.com/Functional-Bus-Description-Language/go-vfbdb
https://github.com/Functional-Bus-Description-Language/go-vfbdb
https://doi.org/10.5281/zenodo.7798573
https://github.com/Functional-Bus-Description-Language/tree-sitter-fbdl
http://link.springer.com/10.1007/978-1-4615-4034-2


List of Figures

1.1 Example internal structure of some SoC design with bus. . . . . . . . . . . 12
1.2 Conceptual stack of layers in the register-centric approach. . . . . . . . . . 17
1.3 Conceptual stack of layers in the functionality-centric approach. . . . . . . 19

2.1 AXI channel architecture of writes [4]. . . . . . . . . . . . . . . . . . . . . 26
2.2 AXI single read transaction with single data transfer. . . . . . . . . . . . . 27
2.3 Possible Wishbone interconnections. . . . . . . . . . . . . . . . . . . . . . 29
2.4 Wishbone classic standard single read transaction. . . . . . . . . . . . . . . 30
2.5 Example 12 nodes mesh network on chip. . . . . . . . . . . . . . . . . . . . 32

3.1 A simple design created using Block Designer in Xilinx Vivado environment
[50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The address space allocation for the simple design from figure 3.1. . . . . . 41

5.1 A possible access path to the external memory with separate FBDL de-
scription. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Example system with enumeration types synchronization issue. . . . . . . 69

7.1 Current structure of the implemented compiler. . . . . . . . . . . . . . . . 73
7.2 Example register layout of data of Single Single access type. . . . . . . . . 75
7.3 Example register layout of data of Single Continuous access type. . . . . . 76
7.4 Example register layout of data of Array Single access type. . . . . . . . . 76
7.5 Example register layout of data of Array Continuous access type. . . . . . 77
7.6 Example register layout of data of Array Multiple access type. . . . . . . . 77
7.7 Register layout without functionality sorting. . . . . . . . . . . . . . . . . 79
7.8 Register layout with functionality sorting. . . . . . . . . . . . . . . . . . . 80
7.9 Register layout for status -> config order. . . . . . . . . . . . . . . . . . . 80
7.10 Register layout for config -> status order. . . . . . . . . . . . . . . . . . . 80
7.11 Simplified connection scheme of a system utilizing FBDL. . . . . . . . . . 81
7.12 Sequence diagrams for rmw transaction without and with provider support

for rmw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.13 Example bus structure with extra master providing rmw transaction support. 85

95



List of Tables

3.1 Comparison of some of the features of the bus and register management
tools (Y - yes, N - no, DoC - Depends on Compiler, P- Partial, U - Unclear). 34

96



Appendices

97



A Supervisor registerification results
Functionality addresses are relative addresses. Absolute addresses are obtained by adding
block start address.
{

"Name": "Main",
"Doc": "",
"IsArray": false,
"Count": 1,
"Masters": 1,
"Reset": "",
"Width": 32,
"Sizes": { "BlockAligned": 32, "Compact": 10, "Own": 1 },
"AddrSpace": { "Start": 0, "End": 31 },
"BoolConsts": null,
"BoolListConsts": null,
"FloatConsts": null,
"IntConsts": null,
"IntListConsts": null,
"StrConsts": null,
"Configs": null,
"Irqs": null,
"Masks": null,
"Memories": null,
"Procs": null,
"Statics": [

{
"Name": "ID",
"Doc": "Bus identifier.",
"IsArray": false,
"Count": 1,
"Groups": null,
"InitValue": "x\"39a90380\"",
"ReadValue": "",
"ResetValue": "",
"Width": 32,
"Access": { "Strategy": "Single", "Addr": 0, "StartBit": 0, "EndBit": 31 }

}
],
"Statuses": null,
"Streams": null,
"Subblocks": [

{
"Name": "Supervisor",
"Doc": "",
"IsArray": false,
"Count": 1,
"Masters": 1,
"Reset": "",
"Width": 32,
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"Sizes": { "BlockAligned": 16, "Compact": 9, "Own": 9 },
"AddrSpace": { "Start": 16, "End": 31 },
"BoolConsts": null,
"BoolListConsts": null,
"FloatConsts": null,
"IntConsts": { "WORKER_COUNT": 24 },
"IntListConsts": null,
"StrConsts": null,
"Configs": null,
"Irqs": null,
"Masks": [

{
"Name": "Workers_Mask",
"Doc": "",
"IsArray": false,
"Count": 1,
"Atomic": true,
"Groups": null,
"InitValue": "",
"ReadValue": "",
"ResetValue": "",
"Width": 24,
"Access": { "Strategy": "Single", "Addr": 5, "StartBit": 0, "EndBit": 23 }

}
],
"Memories": null,
"Procs": [

{
"Name": "Reset_Counter",
"Doc": "",
"IsArray": false,
"Count": 1,
"Delay": null,
"Params": null,
"Returns": null,
"CallAddr": 0,
"ExitAddr": null

},
{

"Name": "Program",
"Doc": "",
"IsArray": false,
"Count": 1,
"Delay": null,
"Params": [

{
"Name": "counter_value",
"Doc": "",
"IsArray": false,
"Count": 1,
"Groups": null,
"Range": null,
"Width": 48,
"Access": {

"Strategy": "Continuous",
"RegCount": 2, "StartAddr": 1, "StartBit": 0, "EndBit": 15

99



}
},
{

"Name": "worker_data",
"Doc": "",
"IsArray": true,
"Count": 2,
"Groups": null,
"Range": null,
"Width": 12,
"Access": {

"Strategy": "Continuous",
"RegCount": 2, "ItemCount": 2, "ItemWidth": 12, "StartAddr": 2, "StartBit": 16

}
}

],
"Returns": null,
"CallAddr": 3,
"ExitAddr": null

},
{

"Name": "Unprogram",
"Doc": "",
"IsArray": false,
"Count": 1,
"Delay": null,
"Params": null,
"Returns": null,
"CallAddr": 4,
"ExitAddr": null

}
],
"Statics": null,
"Statuses": [

{
"Name": "Counter",
"Doc": "",
"IsArray": false,
"Count": 1,
"Atomic": true,
"Groups": null,
"ReadValue": "",
"Width": 48,
"Access": {

"Strategy": "Continuous", "RegCount": 2, "StartAddr": 6, "StartBit": 0, "EndBit": 15
}

},
{

"Name": "Workers_Ready",
"Doc": "",
"IsArray": false,
"Count": 1,
"Atomic": true,
"Groups": null,
"ReadValue": "",
"Width": 24,
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"Access": { "Strategy": "Single", "Addr": 8, "StartBit": 0, "EndBit": 23 }
},
{

"Name": "programmed",
"Doc": "",
"IsArray": false,
"Count": 1,
"Atomic": true,
"Groups": [ "status" ],
"ReadValue": "",
"Width": 1,
"Access": { "Strategy": "Single", "Addr": 8, "StartBit": 24, "EndBit": 24 }

},
{

"Name": "programmed_in_past",
"Doc": "",
"IsArray": false,
"Count": 1,
"Atomic": true,
"Groups": [ "status" ],
"ReadValue": "",
"Width": 1,
"Access": { "Strategy": "Single", "Addr": 8, "StartBit": 25, "EndBit": 25 }

}
],
"Streams": null,
"Subblocks": null

}
]

}
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B Python code for mask access
def calc_mask(m):

"""
calc_mask calculates mask based on tuple (End Bit, Start Bit).
The returned mask is shifted to the right.
"""
return (((1 << (m[0] + 1)) - 1) ^ ((1 << m[1]) - 1)) >> m[1]

class SingleSingle:
def __init__(self, iface, addr, mask):

self.iface = iface
self.addr = addr
self.mask = calc_mask(mask)
self.width = mask[0] - mask[1] + 1
self.shift = mask[1]

def read(self):
return (self.iface.read(self.addr) >> self.shift) & self.mask

class MaskSingleSingle(SingleSingle):
def __init__(self, iface, addr, mask):

super().__init__(iface, addr, mask)

def _bits_to_iterable(self, bits):
if bits == None:

return range(self.width)
elif type(bits) == int:

return (bits,)
return bits

def _assert_bits_in_range(self, bits):
for b in bits:

assert 0 <= b < self.width, "mask overrange"

def _assert_bits_to_update(self, bits):
if bits == None:

raise Exception("bits to update cannot have None value")
if type(bits).__name__ in ["list", "tuple", "range", "set"] and \

len(bits) == 0:
raise Exception("empty " + type(bits) + " of bits to update")
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def set(self, bits=None):
bits = self._bits_to_iterable(bits)
self._assert_bits_in_range(bits)

mask = 0
for b in bits:

mask |= 1 << b

self.iface.write(self.addr, mask << self.shift)

def clear(self, bits=None):
bits = self._bits_to_iterable(bits)
self._assert_bits_in_range(bits)

mask = self.mask
for b in bits:

mask ^= 1 << b

self.iface.write(self.addr, mask << self.shift)

def toggle(self, bits=None):
bits = self._bits_to_iterable(bits)
self._assert_bits_in_range(bits)

xor_mask = 0
for b in bits:

xor_mask |= 1 << b
xor_mask <<= self.shift

mask = self.iface.read(self.addr) ^ xor_mask
self.iface.write(self.addr, mask)

def update_set(self, bits):
self._assert_bits_to_update(bits)

bits = self._bits_to_iterable(bits)
self._assert_bits_in_range(bits)

mask = 0
for b in bits:

mask |= 1 << b

mask = self.iface.read(self.addr) | (mask << self.shift)
self.iface.write(self.addr, mask)
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def update_clear(self, bits):
self._assert_bits_to_update(bits)

bits = self._bits_to_iterable(bits)
self._assert_bits_in_range(bits)

mask = 2**BUS_WIDTH - 1
for b in bits:

mask ^= 1 << b

mask = self.iface.read(self.addr) & (mask << self.shift)
self.iface.write(self.addr, mask)
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Abstract

This document is the official specification of the Functional Bus Description Language. Its main purpose
is to define the syntax and semantics of the language. Functional Bus Description Language is a domain-
specific language for bus and registers management. Its main characteristic is the shift of paradigm from
the register-centric approach to the functionality-centric approach. In the register-centric approach user
defines registers and then manually lays out the data into the registers. In the functionality-centric ap-
proach user defines the functionality of the data and the registers and bus hierarchy are later automatically
inferred. By defining the functionality of the data placed in the registers it is possible to generate more
code, increase code robustness, improve system design readability, and shorten the implementation
process.
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design verification, documentation generation, electronic design automation, EDA, electronic systems,
Functional Bus Description Language, FBDL, hardware design, hardware description language, HDL, hi-
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Glossary

Not all terms defined in the glossary list are used in the specification. Some of them are formally defined because
they are helpful when discussing, for example, compiler implementation.

call register
The call register term is used to refer to the proc register with the associated call pulse signal. When the call
register is written, the call pulse is generated.

data
The data term is used to refer to the content of the registers. Unless it is used in the context of internal data types
of the language.

downstream
The downstream is a stream from the requester to the provider.

exit register
The exit register term is used to refer to the proc register with the associated exit pulse signal. When the exit
register is read, the exit pulse is generated.

functionality
The functionality is the functionality of given data. It can be seen as a type of the data. In case of functionalities
encapsulating other functionalities, such as bus, block, proc or stream, the functionality is used to denote a
broader context of encapsulated data.

gap
The gap term is used to refer to unused bits within register.

gateware
The gateware term is used to refer to the overall configuration of the logic placed in the FPGA to make it behave
according to the desired description. The term is not formally defined anywhere, however it is used to unburden
the firmware term.  IEEE Std 610.12-1990 also mentions that the firmware term is too overloaded and confusing.

generator
The generator term is used to refer to the part of a compiler directly responsible for the target code generation
based on registerification results.

information
The information term is used to refer to the metadata on the functionality data. The metadata describes where
the data is located, for example bit masks and register addresses, and how to access the data.

means
The means term is used to refer to the automatically generated method or data that shall be used by the requester
to request particular functionality. A means in particular programming language is usually a function, method or
procedure that shall be called or class, dictionary, map or structure containing information on how to access par-
ticular functionality.

provider
The provider is the system component containing the generated registers and providing described functionalities.

pure call register
The term pure call register is used to refer to the call register containing no proc returns.

pure exit register
The term pure exit register is used to refer to the exit register containing no proc params.
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registerification
The registerification is the process of placing data of functionalities into the registers. The process includes as-
signing data bit masks, register addresses as well as block addresses and masks. The term is new in the field and
is coined in the specification.

requester
The requester is the system component accessing the generated registers and requesting described functionalities.

strobe register
The strobe register term is used to refer to the stream register with the associated strobe pulse signal. When
the strobe register is written (downstream), or read (upstream) the strobe pulse is generated.

target
The target term is used to refer to the transpilation target. For example, a target can be a requester Python code
allowing to access functionalities of the provider in an asynchronous fashion. A VHDL code providing descrip-
tion of the functionality registers and exposing AXI compliant interface is a valid provider target. A JSON file
describing registerification results is for example a valid documentation target. The target depends on several
factors, but the most important ones are programming/description language, synchronous or asynchronous access
interface, bus type, dynamic or static address map reloading. Each target has its recipient. It is either provider,
requester or documentation.

upstream
The upstream is a stream from the provider to the requester.
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1. Overview

1.1. Scope
This document specifies the syntax and semantics of the Functional Bus Description Language (FBDL).

1.2. Purpose
This document is intended for the implementers of tools supporting the language and for users of the language. The
focus is on defining the valid language constructs, their meanings and implications for the hardware and software
that is specified or configured, how compliant tools are required to behave, and how to use the language.

1.3. Motivation
Describing and managing registers can be a tedious and error-prone task. The information about registers is utilized
by software, hardware, and verification engineers. Typically a specification of the registers is designed by the hard-
ware designer or system architect. During the design and implementation phases, it changes multiple times due to
different reasons such as bugs, requirement changes, technical limitations, or user feedback. A simple change in a
single register may imply adjustments in both hardware and software. These adjustments cost money and time.

Several formal and informal tools exist to address issues related to register management. However, they all share the
same concept of describing registers at a very low level. That is, the user has to implicitly define the layout of the
registers. For example, in the case of a register containing multiple statuses, its the user responsibility to specify the
bit position for every status.

The FBDL is different in this term. The user specifies the functionalities that must be provided by the data stored in
the registers. The register layout is automatically generated based on the functional requirements. Such an approach
increases the amount of automatically generated hardware description and software code and decreases the amount
of code requiring manual implementation compared to the register-centric approach. Not only the register masks,
addresses, and single read and write functions can be generated, but complete custom functions with optimized ac-
cess methods.  This, in turn, leads to shorter design iterations and fewer bugs.

1.4. Word usage
The terms "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "may", and
"optional" in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.1.

1.5. Syntactic description
The formal syntax of the FBDL is described by means of context-free syntax using a simple variant of the Backus-
Naur Form (BNF).  In particular:

a) Lowercase words in constant-width font, some containing embedded underscores, are used to denote
syntactic categories, for example:

single_import_statement

Whenever the name of a syntactic category is used, apart from the syntax rules themselves, underscores are re-
placed with spaces thus, "single import statement" would appear in the narrative description when referring to
the syntactic category.

b) Boldface words are used to denote keywords, for example:

mask

Keywords shall be used only in those places indicated by the syntax.
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c) A production consists of a left-hand side, the symbol "::=" (which is read as can be replaced by), and a right-
hand side. The left-hand side of a production is always a syntactic category, the right-hand side is a replace-
ment rule. The meaning of a production is a textual-replacement rule. Any occurrence of the left-hand side
may be replaced by an instance of the right-hand side.

d) A vertical bar ( | ) separates alternative items on the right-hand side of a production unless it occurs immedi-
ately after an opening brace, in which case it stands for itself, for example:

decimal_digit ::= zero_digit | non_zero_decimal_digit
choices ::= choice { | choice }

In the first instance, an occurrence of decimal digit can be replaced by either zero digit or non zero decimal
digit. In the second case, "choices" can be replaced by a list of "choice", separated by vertical bars, see item f)
for the meaning of braces.

e) Square brackets [ ] enclose optional items on the right-hand side of a production. Note, however, sometimes
square brackets in the right-hand side of the production are part of the syntax.  In such cases bold font is used.

f) Braces { } enclose a repeated item or items on the right-hand side of a production. The items may appear zero
or more times.

g) The term declared identifier is used for any occurrence of an identifier that already denotes some declared
item (declared by a user or by specification, for example built-in function name).
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2. References
The following referenced documents are indispensable for the application of this document (i.e., they must be under-
stood and used, so each referenced document is cited in the text and its relationship to this document is explained).
For dated references, only the edition cited applies. For undated references, the latest edition of the referenced docu-
ment (including any amendments or corrigenda) applies.

• IETF Best Practices Document 14, RFC 2119,

• IETF UTF-8, a transformation format of ISO 10646, RFC 3629,

• IEEE Std 754™-2019, IEEE Standard for Floating-Point Arithmetic.
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3. Concepts
The core concept behind the FBDL is based on the fact that if there is a system part with the registers that can be ac-
cessed, then there is at least one more system part accessing these registers. The part accessing the registers is called
the requester. The part containing the registers is called the provider, as it provides functions via particular func-
tionalities.

The code generated from the FBDL description can be conceptually divided into two parts, the requester part and the
provider part. The requester code usually refers to the generated software or firmware implemented in typical pro-
gramming languages such as: Ada, C, C++, Go, Java, Python, Rust etc. The provider code usually refers to the gen-
erated gateware or hardware implemented in hardware description languages or frameworks such as: VHDL, Sys-
temVerilog, SystemC, Bluespec, PipelineC, MyHDL, Chisel etc. However, implementing the provider for example
as a firmware, using the C language and a microcontroller, is practically doable and valid.

The description of functionalities shall be placed in files with .fbd extension. By default, the bus named Main is
the entry point for the description used for the code generation. A compiler is free to support a parameter for chang-
ing the name of the main bus.

description ::=
import_statement |
constant_definition |
type_definition |
instantiation

3.1. Properties
Each data in the FBDL description has associated functionality and each functionality has associated properties.
Properties allow the configuration of functionalities. Each property must have a concrete type. The default value of
each property is specified in the round brackets () in the functionality subsections. If the default value is bus
width, then the default value equals the actual value of the bus width property. If the default value is unini-
tialized, then it shall be represented as the uninitialized meta value at the provider side. If the target language
for the provider code does not have a concept of uninitialized value, then values such as 0, Null, None, nil etc.
shall be used.

Each property either defines or declares functionality feature or behavior. Definitive properties specify the desired
behavior of the automatically generated code. They specify elements directly managed by the FBDL. Examples of
definitive properties include atomic or width properties. Declarative properties describe the behavior of external
elements that automatically generated code only interacts with. Declarative properties are required to generate valid
logic, and it is the user’s responsibility to make sure their values match the behavior of external components. Exam-
ples of declarative properties include access or in-trigger properties.

property_assignment ::= property_identifier = expression

property_assignments ::=
property_assignment
{ ; property_assignment }
newline

semicolon_and_property_assignments ::= ; property_assignments

property_identifier ::=
access | add-enable | atomic | byte-write-enable | clear | delay |
enable-init-value | enable-reset-value | groups | init-value |
in-trigger | masters | out-trigger | range | read-latency |
read-value | reset | reset-value | size | width
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3.2. Instantiation

A functionality can be instantiated in a single line or in multiple lines.

instantiation ::= single_line_instantiation | multi_line_instantiation

single_line_instantiation ::=
identifier
[ array_marker ]
declared_identifier | qualified_identifier
[ argument_list ]
newline | semicolon_and_property_assignments

multi_line_instantiation ::=
identifier
[ array_marker ]
declared_identifier | qualified_identifier
[ argument_list ]
functionality_body

functionality_body ::=
newline
indent
{

constant_definition |
type_definition |
property_assignments |
instantiation

}
dedent

Following code shows examples of single line instantiations:

C config
C config; width = 8
M [8]mask; atomic = false; width = 128; init-value = 0
err error_t(48); atomic = false

3.3. Addressing
The FBDL specification does not impose byte or word addressing. There is also no property allowing to switch be-
tween these two addressing modes. The addressing mode handling is completely left to the particular compiler im-
plementation. If the compiler has a monolithic structure (no distinction between the compiler frontend and back-
end), then it is probably the best decision to use the addressing mode used by the target bus (for example, byte ad-
dressing for AXI or word addressing for Wishbone). Another option is providing a compiler flag or parameter to
specify the addressing mode during the compiler call. However, in the case of a compiler frontend implementation,
it is recommended to use word addressing with a word width equal to the bus width. As it is not known whether the
compiler backend will use the word or byte addressing, using the word addressing in the compiler frontend is usu-
ally a more straightforward approach, as the byte addresses are word addresses multiplied by the number of bytes in
the single word.

3.4. Positive logic
The FBDL uses only positive logic. An active level in positive logic is a high level (binary 1), and an active edge is
a rising edge (transition from low level to high level, from binary 0 to binary 1). It does not mean that FBDL cannot
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be used with external components using negative logic. To connect external negative logic components to the gener-
ated FBDL positive logic components, one shall negate the signals at the interface connection level. Supporting
both positive and negative logic would unnecessarily complex the language and would create a second way for solv-
ing the same problem making the set of possible solutions non-orthogonal.

3.5. Domain-specific language
The FBDL is a domain-specific language with its own syntax. Some of the register-centric tools are built on top of
standard file formats or markup languages such as JSON, TOML, XML or YAML. Such an approach allows for fast
prototyping and has a lower entry threshold. However, it becomes a burden when more conceptually advanced fea-
tures, for example parametrization, have to be supported. The description quickly begins to gain in volume, and the
overall feeling is it is needlessly verbose. What is more, having its own adjusted language syntax allows for more
informative compiler error messages.
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4. Lexical elements
FBDL has following types of lexical tokens:

• comment,

• identifier,

• indent,

• keyword,

• literal,

• newline.

4.1. Comments
There is only a single type of comment, a single-line comment. A single-line comment starts with the ’#’ character
and extends up to the end of the line. A single-line comment can appear on any line of an FBDL file and may con-
tain any character, including glyphs and special characters. The presence or absence of comments has no influence
on whether a description is legal or illegal. Their sole purpose is to enlighten the human reader.

4.1.1. Documentation comments

Documentation comments are comments that appear immediately before constant definitions, type definitions, and
functionality instantiations with no intervening newlines. The following code shows examples of documentation
comments:

# Number of receivers
const RECEIVERS_COUNT = 7
Main bus

# Data receivers
Receivers [RECEIVERS_COUNT]block

# 0 disable receiver, 1 enable receiver
Enable config; width = 1
# Number of frames in the buffer
Frame_Count status
# Read_Frame reads single data frame
Read_Frame proc

data [4]return; width = 8

4.2. Identifiers
Identifiers are used as names.  An identifier shall start with a letter.

uppercase_letter ::= A | B | C | D | E | F | G | H | I | J | K | L | M |
N | O | P | R | S | T | U | V | W | X | Y | Z

lowercase_letter ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
n | o | p | r | s | t | u | v | w | x | y | z

letter ::= uppercase_letter | lowercase_letter

letter_or_digit ::= letter | decimal_digit

identifier ::= letter { underscore | letter_or_digit }
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Following code contains some valid and invalid identifiers.

const C_20 = 20 # Valid
const _C20 = 20 # Invalid
Main bus

cfg1 config # Valid
1cfg config # Invalid

4.2.1. Declared identifier

Declared identifier is used for any occurrence of an identifier that already denotes some declared item.

declared_identifier ::= letter { underscore | letter_or_digit }

4.2.2. Qualified identifier

The qualified identifier is used to reference a symbol from foreign package.

qualified_identifier ::= declared_identifier.declared_identifier

The first declared identifier denotes the package, and the second one denotes the symbol from this package.

4.3. Indent
The indentation has semantics meaning in the FBDL. There is only a single indent character, the horizontal tab
(U+0009). It is hard to express the indent and dedent using BNF. Ident is the increase of the indentation level, and
dedent is the decrease of the indentation level. In the following code the indent happens in the lines number 2, 5 and
7, and the dedent happens in the line number 4. What is more, double dedent happens at the EOF. The number of
indents always equals the number of dedents in the syntactically and semantically correct file.

1: type cfg_t config
2: atomic = false
3: width = 64
4: Main bus
5: C cfg_t
6: Blk block
7: C cfg_t
8: S status

Not only the indent alignment is important, but also its level. In the following code the first type definition is cor-
rect, as the indent level for the definition body is increased by one. The second type definition is incorrect, even
though the indent within the definition body is aligned, as the indent level is increased by two.

# Valid indent
type cfg1_t config

atomic = false
width = 8

# Invalid indent, indent increased by two
type cfg2_t config

atomic = false
width = 8

4.4. Keywords
FBDL has following keywords: atomic, block, bus, clear, const, doc, false, import, init-value, irq, mask, mem-
ory, param, proc, range, reset, read-value, reset-value, return, static, stream, true, in-trigger, out-trigger.
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Keywords can be used as identifiers with one exception. Keywords denoting built-in types (functionalities) cannot
be used as identifiers for custom types.

4.5. Literals

4.5.1. Bool literals

bool_literal ::= false | true

4.5.2. Number literals

underscore ::= _

zero_digit ::= 0

non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

decimal_digit ::= zero_digit | non_zero_decimal_digit

binary_base ::= 0B | 0b

binary_digit ::= 0 | 1

octal_base ::= 0O | 0o

octal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

hex_base ::= 0X | 0x

hex_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
A | a | B | b | C | c | D | d | E | e | F | f

4.5.3. Integer literals

integer_literal ::=
binary_literal |
octal_literal |
decimal_literal |
hex_literal

binary_literal ::= binary_base binary_digit {[underscore] binary_digit}

octal_literal ::= octal_base octal_digit {[underscore] octal_digit}

decimal_literal ::= non_zero_decimal_digit {[underscore] decimal_digit}

hex_literal ::= hex_base hex_digit {[underscore] hex_digit}

4.5.4. Real literals

The real literals shall be represented as described by IEEE Std 754, an IEEE standard for double-precision floating-
point numbers.

Real numbers can be specified in either decimal notation (for example, 17.83) or in scientific notation (for example,
13e8, which indicates 13 multiplied by 10 to the eighth power). Real numbers expressed with a decimal point shall
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have at least one digit on each side of the decimal point.

4.5.5. String literals

A string literal is a sequence of zero or more UTF-8 characters enclosed by double quotes ("").

string_literal ::= "{UTF-8 character}"

4.5.6. Bit string literals

A bit string literal is a sequence of zero or more digit or meta value characters enclosed by double quotes ("") and
preceded by a base specifier. The meta value characters are supported because of hardware description languages,
that also have a concept of metalogical values.

meta_character ::=  - | U | W | X | Z

The meta characters have following meaning:

• ’-’ - don’t care,

• ’U’ - uninitialized,

• ’W’ - weak unknown,

• ’X’ - unkown,

• ’Z’ - high-impedance state.

binary_or_meta ::= binary_digit | meta_character

octal_or_meta ::= octal_digit | meta_character

hex_or_meta ::= hex_digit | meta_character

There are three types of bit string literals: binary bit string literal, octal bit string literal and hex bit stirng literal.

bit_string_literal ::=
binary_bit_string_literal |
octal_bit_string_literal |
hex_bit_string_literal

binary_bit_string_base = B | b

binary_bit_string_literal = binary_bit_string_base "{binary_or_meta}"

octal_bit_string_base = O | o

octal_bit_string_literal = octal_bit_string_base "{octal_or_meta}"

hex_bit_string_base = X | x

hex_bit_string_literal = hex_bit_string_base "{hex_or_meta}"

If meta value is present in a bit string literal, then it is expanded to the proper width depending on the bit string base.
For example, following equations are true:

o"XW" = b"XXXWWW"
x"U-" = b"UUUU----"
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4.5.7. Time literals

A time literal is a sequence of integer literal and a time unit.

time_unit ::= ns | us | ms | s

time_literal ::= integer_literal time_unit

Time literals are used to create values of time data type, required for example by the delay property.
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5. Data types
There are 6 data types in FBDL:

• bit string,

• bool,

• integer,

• real,

• string,

• time.

Types are implicit and are not declared. The type of the value evaluated from an expression must be checked before
any assignment or comparison. If there is a type mismatch that can be resolved with implicit rules, then it shall be
resolved. In case of a type mismatch that cannot be resolved, an error must be reported by the compiler.

Conversion from bool to integer in expressions is implicit. Conversion from integer to real in expressions is implicit.
Conversion from real to integer can be implicit if there is no fractional part. If fractional part is present, then conver-
sion from real to integer must be explicit and must be done by calling any function returning integer type, for exam-
ple ceil(), floor().

The below picture presents a graph of possible implicit conversions between different data types.

Bool

Bit
string

Integer Real
Always (false -> 0, true -> 1)

Always

Always

Only if no fractional part

5.1. Bit string
The value of the bit string type is used for all *-value properties. It might be created explicitly using the bit string
literal or it might be converted implicitly from the value of integer type. The only way to create a bit string value
containing meta values is to explicitly use the bit string literal.

The below table presents unary negation operation results applied to possible bit string data type values.

Bit string unary bitwise negation

In Value             Out Value
0 1
1 0
- -
U U
W W
X X
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Z Z

Below tables present binary operation results applied to possible bit string data type values.

Bit string binary bitwise and (&) resolution      

Operands 0 1 - U W X Z

0 0 0 0 U 0 X 0

1 0 1 1 U 1 X 1

- 0 1 - U W X Z

U U U U U U U U

W 0 1 X U W X W

X X X X U X X X

Z 0 1 X U W X Z

Bit string binary bitwise or (|) resolution       

Operands 0 1 - U W X Z

0 0 1 0 U 0 X 0

1 1 1 1 U 1 X 1

- 0 1 - U W X Z

U U U U U U U U

W 0 1 X U W X W

X X X X U X X X

Z 0 1 X U W X Z

Bit string binary bitwise xor (ˆ) resolution      

Operands 0 1 - U W X Z

0 0 1 0 U 0 X 0

1 1 0 1 U 1 X 1

- 0 1 - U W X Z

U U U U U U U U

W 0 1 X U W X W

X X X X U X X X

Z 0 1 X U W X Z

5.2. Bool
The value of the bool type can be created explicitly using true or false literals. The value of the bool type shall
be implicitly converted to the value of the integer type in places where the value of the integer type is required. The
boolean false value shall be converted to the integer value 0. The boolean true value shall be converted to the
integer value 1.  In the following example, the value of I1 evaluates to 1, and the value of I2 evaluates to 2.

const B0 = false
const B1 = true
const I1 = B0 + B1
const I2 = B1 + B1

The bool - integer conversion is asymmetric. Implicit conversion of a value of the integer type to a value of the bool
type is forbidden. This is becuase values of the bool type are often used to count the number of elements or to arbi-
trarily enable/disable an element generation. However, a value of the integer type appearing in a place where a value
of the bool type is required is usually a sign of a mistake. To convert a value of the integer type to a value of the
bool type the built-in bool() function must be called.
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5.3. Integer
The integer data type is always signed integer and must be at least 64 bits wide.

5.4. Real
The real data type is 64 bits IEEE 754 double precision floating-point type.

5.5. String
The string data type can only be created explicitly using a string literal. The string data type is only used for setting
values of some properties, for example groups.

5.6. Time
The time data type is only used for assigning value to the properties expressed in time. The value of time type can
be created explicitly using the time literal. Values of time type can be added regardless of their time units. Values of
the time type can also be multiplied by values of the integer type.  All of the below property assignments are valid.

delay = 1 s + 1 ms + 1 us + 1 ns
delay = 5 * 60 s # Sleep for 5 minutes.
delay = 10 ms * 4 + 7 * 8 us
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6. Expressions
An expression is a formula that defines the computation of a value by applying operators and functions to operands.

expression ::=
bool_literal |
integer_literal |
real_literal |
string_literal |
bit_string_literal |
time_literal |
declared_identifier |
qualified_identifier |
unary_operation |
binary_operation |
function_call |
subscript |
parenthesized_expression |
expression_list

The function call is used to call one of built-in functions.

function_call ::=
declared_identifier( [ expression { , expression } ] )

The subscript is used to refer to a particular element from the expression list.

subscript ::= declared_identifier[ expression ]

The parenthesized expression may be used to explicitly set order of operations.

parenthesized_expression ::= ( expression )

The expression list may be used to create a list of expressions.

expression_list ::= [ [ expression { , expression } ] ]

6.1. Operators

6.1.1. Unary Operators

unary_operation ::= unary_operator expression

unary_operator ::= unary_arithmetic_operator | unary_bitwise_operator

unary_arithmetic_operator ::= -

unary_bitwise_operator ::= !

FBDL unary operators                         

Token     Operation    Operand Type     Result Type
- Opposite Integer Integer

Real Real

Bool Bool
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! Negation          Bit String           Bit String  
Integer Integer

6.1.2. Binary Operators

binary_operation ::= expression binary_operator expression

binary_operator ::=
binary_arithmetic_operator |
binary_comparison_operator |
binary_logical_operator |
binary_bitwise_operator

binary_arithmetic_operator ::= + | - | * | / | % | **

binary_comparison_operator ::= == | != | < | <= | > | >=

binary_logical_operator ::= && | ||

binary_bitwise_operator ::= << | >>

FBDL binary arithmetic operators                                           

Token         Operation        Left Operand Type   Right Operand Type    Result Type
Integer Integer Integer
Integer Real Real

+ Addition Real Integer Real
Real Real Real
Time Time Time

Integer Integer Integer
- Subtraction Integer Real Real

Real Integer Real
Real Real Real

Integer Integer Integer
Integer Real Real

* Multiplication Real Integer Real
Real Real Real

Integer Time Time
Time Integer Time

Integer Integer Real
\ Division Integer Real Real

Integer Real Real
Real Real Real

% Remainder Integer Integer Integer

Integer Integer Real
** Exponentiation Integer Real Real

Real Integer Real

FBDL binary comparison operators                                           

Token               Operator              Left Operand Type    Right Operand Type Result
Integer Integer Bool

== Equality Integer Real Bool
Real Integer Bool
Real Real Bool

Integer Integer Bool
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!= Nonequality Integer Real Bool
Real Integer Bool
Real Real Bool

Integer Integer Bool
< Less Than                         Integer Real Bool

Real Integer Bool
Real Real Bool

Integer Integer Bool
<= Less Than or Equal                 Integer Real Bool

Real Integer Bool
Real Real Bool

Integer Integer Bool
> Greater Than                      Integer Real Bool

Real Integer Bool
Real Real Bool

Integer Integer Bool
>= Greater Than or Equal               Integer Real Bool

Real Integer Bool
Real Real Bool

FBDL binary logical operators                                                     

Token                     Operator                    Left Operand Type    Right Operand Type Result
&& Short-circuiting logical AND                 Bool                              Bool                    Bool 

|| Short-circuiting logical OR                  Bool                              Bool                    Bool 

FBDL binary bitwise operators                                          

Token      Operator     Left Operand Type   Right Operand Type   Result Type
<< Left Shift                Integer Integer Integer

>> Right Shift               Integer Integer Integer

& And                  Bit String                     Bit String                Bit String 
Integer Integer Integer

| Or                    Bit String                     Bit String                Bit String 
Integer Integer Integer

ˆ Xor                   Bit String                     Bit String                Bit String 
Integer Integer Integer

The bool data type is not valid operand type for the most of the binary operations. However, as there is the rule for
implicit conversion from the bool data type to the integer data type, all operations accepting the integer operands
work also for the bool operands.

6.2. Functions
The FBDL does not allow defining custom functions for value computations. However, FBDL has following built-in
functions:

abs(x integer|real) integer|real
The abs function returns the absolute value of x.

bool(x integer) bool
The bool function returns a value of the bool type converted from a value x of the integer type. If x equals 0,
then the false is returned. In all other cases the true is returned.

ceil(x float) integer
The ceil function returns the least integer value greater than or equal to x.
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floor(x float) integer
The floor function returns the greatest integer value less than or equal to .

log2(x float) integer|float
The log2 returns the binary logarithm of x.

log10(x float) integer|float
The log10 returns the decimal logarithm of x.

log(x, b float) integer|float
The log function returns the logarithm of x to the base b.

u2(x, w integer) integer
The u2 function returns two’s complement representation of x as an integer assuming width w. For example
u2(-1, 8) returns 255.
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7. Functionalities
Functionalities are the core part of the FBDL. They define the capabilities of the provider. Each functionality is dis-
tinct and unambiguously defines the provider behavior and the interface that must be generated for the requester.
There are following 12 functionalities:

1) block,

2) bus,

3) config,

4) irq,

5) mask,

6) memory,

7) param,

8) proc,

9) return,

10) static,

11) status,

12) stream.

7.1. Block
The block functionality is used to logically group or encapsulate functionalities. The block is usually used to
separate functionalities related to particular peripherals such as UART, I2C transceivers, timers, ADCs, DACs etc.
The block might also be used to limit the access for particular provider to only a subset of functionalities.

The block functionality has following properties:

masters integer (1)
The masters property defines the number of block masters.

reset string (None)
The reset property defines the block reset type. By default the block has no reset. Valid values of the re-
set property are "Sync" for synchronous reset and "Async" for asynchronous reset.

The following example presents how to limit the scope of access for particular requester.

Main bus
C config
Blk block

masters = 2
S status

The logical connection of the system components may look as follows:
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Requester 1 Master 1 Crossbar 1

Slave 1

C

Crossbar 2

S

Slave 2

Master 2

Requester 2

Provider
Blk

The requester number 1 can acces both config C and status S. However, the requester number 2 can access only the
status S.

7.2. Bus
The bus functionality represents the bus structure. Every valid description must have at least one bus instantiated,
as the bus is the entry point for the description used for the code generation.

The bus functionality has following properties:

masters integer (1)
The masters property defines the number of bus masters.

reset string (None)
The reset property defines the bus reset type. By default the bus has no reset. Valid values of the reset
property are "Sync" for synchronous reset and "Async" for asynchronous reset.

width integer (32)
The width property defines the bus data width.

The bus address width is not explicitly set, as it implies from the address space size needed to pack all functionalities
included in the  Main bus description.

7.3. Config
The config functionality represents configuration data. The configuration data is data that is automatically read by
the provider from its registers. As the config is automatically read by the provider, there is no need for an addi-
tional signal associated with the config, indicating the config write by the requester. By default, a config can be
written and read by the requester.

The config functionality has following properties:

atomic bool (true)
The atomic property defines whether an access to the config must be atomic. If atomic is true, then the
provider must guarantee that any change of the config value, triggered by the requester write, is seen as an
atomic change by the other modules of the provider. This is especially important when the config spans more
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than single register, as in case of single register write the change is always atomic.

groups string | [string] (None)
The groups property defines the groups the config belongs to. In case of a single group, the value can be a
string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the
grouping section.

init-value bit string | integer (uninitialized)
The init-value property defines the initial value of the config.

range integer | [integer] (None)
The range property defines the range of valid values. If the range value is of integer type then, the valid
range is from 0 to the value, including the value. If the range value is an integer list, then it must have even
number of elements. Odd elements specify lower bounds of the subranges and even elements specify upper
bounds of the subranges. For instance, range = [1, 3, 7, 8] means that the valid values are: 1, 2, 3, 7
and 8. Range bound values shall not be negative. This is because the FBDL makes no assumptions on the nega-
tive values encoding. To accomplish negative range checks functions such as u2 must be explicitly called. For
example, following assignment limits the possible range from -16 to -8: range = [u2(-8, 8), u2(-16,
8)]. The range property shall not be explicitly set if the width property is already set. If the range prop-
erty is not set, then the actual range implies from the width property. The code generated for the provider is
not required to check or report if the value provided for the config write is within the valid range. The recom-
mended way is to implement compiler parameter allowing enabling/disabling range check generation.

read-value bit string | integer (None)
The read-value property defines the value returned by the provider on the config read. If the read-value
is not set, then the provider must return the actual value of the config.

reset-value bit string | integer (None)
The reset-value property defines the value of the config after the reset. If the reset-value is set, but a
bus or block containing the config is not resettable (reset = None), then the compiler shall report an
error.

width integer (bus width)
The width property defines the bit width of the config. The width property shall not be explicitly set if the
range property is already set.

The code generated for the requester must provide means for writing and reading the config.

7.4. Irq
The irq functionality represents an interrupt handling. The irq functionality allows for automatic connection of
the following interrupt producers (in-trigger) and consumers (out-trigger):

1) edge producer and edge sensitive consumer,

Irq Producer Generated Logic Irq Consumer

Edge Edge

2) edge producer and level sensitive consumer,

Irq Producer Generated Logic Irq Consumer

Edge Level

Clear On Read / Explicit Clear

3) level producer and edge sensitive consumer,
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Irq Producer Generated Logic Irq Consumer

Level
Edge

Auto Clear

4) level producer and level sensitive consumer.

Irq Producer Generated Logic Irq Consumer

Level
Level

Clear On Read / Explicit Clear
Clear

The irq functionality has following properties:

add-enable bool (false)
The add-enable property defines whether an interrupt has associated enable bit in the interrupt enable regis-
ter. The enable can be used to mask the interrupt.

clear string ("Explicit")
The clear property defines how particular interrupt flag is cleared. The clear property is valid only in case
of level-triggered interrupt consumer. If clear property is set for edge-triggered interrupt consumer a compiler
shall shall report an error. Valid values are "Explicit" and "On Read". The "Explicit" clear requires
compiler to generate a means that must be explicitly used to clear the interrupt flag. The "On Read" clear re-
quires the provider to clear the interrupt flag on each interrupt flag read.

enable-init-value bit string | integer (uninitializd)
The enable-init-value property defines the initial value of the enable bit in the interrupt enable register.
The value must not exceed one bit. If add-enable is false and enable-init-value is set, then a com-
piler must report an error.

enable-reset-value bit string | integer (uninitializd)
The enable-reset-value property defines the value of the enable bit in the interrupt enable register after
the reset. The value must not exceed one bit. If add-enable is false and enable-reset-value is set,
then a compiler must report an error. If the enable-reset-value is set, but a bus or block containing
the irq is not resettable (reset = None), then the compiler shall report an error.

groups string | [string] (None)
The groups property defines the group for irq. Each irq must belong at most to one group. Interrupt groups
are described in irq grouping subsection.

in-trigger string ("Level")
The in-trigger property declares the interrupt producer type of trigger. Valid values are "Edge" and
"Level". It is up to the user to make sure declared trigger is coherent with the actual producer behavior. A
mismatch may lead to incorrect behavior.

out-trigger string ("Level")
The out-trigger property declares the interrupt consumer type of trigger. Valid values are "Edge" and
"Level". It is up to the user to make sure declared trigger is coherent with the actual consumer requirement.
A mismatch may lead to incorrect behavior.

7.5. Mask
The mask functionality represents a bit mask. The mask is data that is automatically read by the provider from its
registers. By default, a mask can be written and read by the requester. The mask is very similar to the config.
The difference is that the config is value-oriented, whereas the mask is bit-oriented. From the provider’s perspec-
tive the mask and the config are the same. From the requester’s perspective the code generated for interacting with
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the mask and the config is different.

The mask functionality has following properties:

atomic bool (true)
The atomic property defines whether an access to the mask must be atomic. If atomic is true, then the provider
must guarantee that any change of the mask value, triggered by the requester write, is seen as an atomic change
by the other modules of the provider. This is especially important when the mask spans more than single regis-
ter, as in case of single register write the change is always atomic.

init-value bit string | integer (uninitialized)
The init-value property defines the initial value of the mask.

read-value bit string | integer (None)
The read-value property defines the value returned by the provider on the mask read. If the read-value
is not set, then the provider must return the actual value of the mask.

reset-value bit string | integer (None)
The reset-value property defines the value of the mask after the reset. If the reset-value is set, but a
bus or block containing the mask is not resettable (reset = None), then the compiler shall report an error.

width integer (bus width)
The width property defines the bit width of the mask.

The code generated for the requester must provide means for setting, clearing and updating particular bits of the
mask. The updating includes setting, clearing and toggling. The set differs from the update set. The set sets partic-
ular bits and simultaneously clears all remaining bits. The update set sets particular bits and keeps the value of the
remaining bits. The clear differs from the update clear in an analogous way. The toggle always works on provided
bits leaving the remaining bits untouched.

7.6. Memory
The memory functionality is used to directly connect and map an external memory to the generated bus address
space. A memory can also be connected to the bus using the proc or stream functionality. However, using the
memory functionality usually leads to greater throughput, but increases the size of the generated address space.

The memory functionality has following properties:

access string ("Read Write")
The access property declares the valid access permissions to the memory for the requester. Valid values of the
access property are: "Read Write", "Read Only", "Write Only".

byte-write-enable bool (false)
The byte-write-enable property declares byte-enable writes, that update the memory on contents on a
byte-to-byte basis. If the byte-write-enable property is explicitly set by a user, and a memory access is
"Read Only", then a compiler shall report an error.

read-latency integer (obligatory if access supports read)
The read-latency property declares the read latency in the number of clock cycles. It is required, if a mem-
ory supports read access, to correcly implement read logic.

size integer (obligatory)
The size property declares the memory size. The size is in the number of memory words with width equal
to the memory width property value.

width integer (bus width)
The width property declares the memory data width.

The code generated for the requester must provide means for single read/write and block read/write transactions.
Whether access means for vectored (scatter-gather) transactions are automatically generated is up to the compiler. If
memory is read-only or write-only, then an unsupported write or read access code is recommended not to be
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generated.

7.7. Param
The param functionality is an inner functionality of the proc and stream functionalities. It represents a data fed
to a procedure or streamed by a downstream.

The param functionality has following properties:

groups string | [string] (None)
The groups property defines the groups the param belongs to. In case of a single group, the value can be a string.
In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the grouping
section.

range integer | [integer] (None)
The range property defines the range of valid values. The range property on param behaves exactly the same
as the range property on config.

width integer (bus width)
The width property defines the bit width of the param.

Following example presents the definition of a downstream with three parameters.

Sum_Reduce stream
type param_t param; width = 16
a param_t
b param_t
c param_t

7.8. Proc
The proc functionality represents a procedure called by the requester and carried out by the provider. The proc
functionality might contain param and return functionalities. Params are procedure parameters and returns rep-
resent data returned from the procedure.

The proc has associated signals at the provider side, the call signal and the exit signal. The call signal must be
driven active for one clock cycle after all registers storing the parameters have been written. The exit signal must be
driven active for one clock cycle after all registers storing the returns have been read. An empty proc (proc without
params and returns) by default has only the call signal. However, if an empty proc has the delay property set, then
it has both the call signal and the exit signal. A proc having only parameters has by default only the call signal.
However, if a proc having only parameters has the delay property set, then it also has the exit signal. A proc hav-
ing only returns has by default only the exit signal. However, if a proc having only returns has the delay property
set, then it also has the call signal. The existence or absence of call and exit signals is summarized in the below ta-
ble.

Proc call and exit signals occurrence                                  

Delay Set        Empty       Only Params    Only Returns Params & Returns
No call call exit                   call & exit
Yes           call & exit       call & exit          call & exit              call & exit

The proc functionality has following properties:

delay time (None)
The delay property defines the time delay between parameters write end and returns read start.

The code generated for the requester must provide a mean for calling the procedure.
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7.9. Return
The return functionality is an inner functionality of the proc and stream functionalities. It represents data re-
turned by a procedure or streamed by an upstream.

The return functionality has following properties:

groups string | [string] (None)
The groups property defines the groups the return belongs to. In case of a single group, the value can be a
string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the
grouping section.

width integer (bus width)
The width property defines the bit width of the return.

The following example presents the definition of a procedure returning 4 element byte array, and a single bit flag in-
dicating whether the data is valid.

Read_Data proc
data [4]return; width = 8
valid return; width = 1

7.10. Static
The static functionality represents data, placed at the provider side, that shall never change.

The static functionality has following properties:

groups string | [string] (None)
The groups property defines the groups the static belongs to. In case of a single group, the value can be a
string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the
grouping section.

init-value bit string | integer (obligatory)
The init-value property defines the initial value of the static.

read-value bit string | integer (None)
The read-value property defines the value that must be returned by the provider on the static read after
the first read.  If the read-value property is set, then the actual value of the static can be read only once.

reset-value bit string | integer (None)
The reset-value property defines the value of the static after the reset. If the reset-value is set, but a
bus or block containing the static is not resettable (reset = None), then the compiler shall report an
error. If both read-value and reset-value properties are set, then the static can be read one more
time after the reset.

width integer (bus width)
The width property defines the bit width of the static.

The static functionality may be used for example for versioning, bus id, bus generation timestamp or for storing
secrets, that shall be read only once. Example:

Secret static
width = C8
init-value = C113
read-value = 0xFF

7.11. Status
The status represents data that is produced by the provider and is only read by the requester.
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The status functionality has following properties:

atomic bool (true)
The atomic property defines whether an access to the status must be atomic. If atomic is true, then the
provider must guarantee that any change of the status value is seen as an atomic change by the requester.
This is especially important when the status spans more than single register, as in case of single register read
the change is always atomic.

groups string | [string] (None)
The groups property defines the groups the status belongs to. In case of a single group, the value can be a
string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the
grouping section.

read-value bit string | integer (None)
The read-value property defines the value that must be returned by the provider on the status read after
the first read.  If the read-value property is set, then the actual value of the status can be read only once.

width integer (bus width)
The width property defines the bit width of the status.

The code generated for the requester must provide a mean for reading the status.

7.12. Stream
The stream functionality represents a stream of data to a provider (downstream), or a stream of data from a
provider (upstream). An empty stream (stream without any param or return) is always a downstream. It is use-
ful for triggering cyclic action with constant time interval. A downstream must not have any return. An upstream
shall not have any param, and must have at least one return.

The stream functionality is very similar to the proc functionality, but they are not the same. There are two main
differences. The first one is that the stream must not contain both param and return. The second one is that
the code for the stream, generated for the requester, shall take into account the fact that access to the stream is
multiple and access to the proc is single. For example, lets consider the following bus description:

Main bus
P proc

p param
S stream

p param

The code generated for the requester, implemented in the C language, might include following function prototypes:

int Main_P(const uint32_t p);
int Main_S(const uint32_t * p, size_t count);

The stream has associated strobe signal at the provider side. The strobe signal must be driven active for one clock
cycle after all registers storing the parameters of a downstream have been written. It also must be driven active for
one clock cycle after all registers storing the returns of an upstream have been read.

The stream functionality has following properties.

delay time (None)
The delay property defines the time delay between writing/reading consecutive datasets for a downstream/up-
stream.
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8. Parametrization
The FBDL provides the following three ways for description parametrization:

• constants,

• type definitions,

• types extending.

8.1. Constant
The constant represents a constant value. The value might be used in expression evaluations. The following code
presents a bus description with three functionalities, all having the same array dimensions and width.

Main width
const ELEMENT_COUNT = 4
const WIDTH = 8
C [ELEMENT_COUNT]config; width = WIDTH
M [ELEMENT_COUNT]mask; width = WIDTH
S [ELEMENT_COUNT]status; width = WIDTH

Constants must be included in the generated code, both for the provider and for the requester. This allows for having
a single source of the constant value.

A constant can be defined in a single line in the single-line constant definition or as a part of the multi-constant defi-
nition.

single_constant_definition ::= const identifier = expression newline

Examples of single constant definition:

const WIDTH = 16
const FOO = 8 * BAR
const LIST = [1, 2, 3, 4, 5]

multi_constant_definition ::=
const newline
indent
identifier = expression newline
{ identifier = expression newline }
dedent

Examples of multi-constant definition:

const
WIDTH = 16
FOO = 8 * BAR
LIST = [1, 2, 3, 4, 5]

const
ONE = 1
TWO = ONE + 1
THREE = TWO + 1

8.2. Type definition
The type definition allows for defining custom functionalities. Any custom functionality resolves to one of the built-
in functionalities. However, by defining custom functionality types it is possible to preset property values or to cre-
ate easily parametrizable functionalities.  The former leads to shorter descriptions and helps to avoid duplication.
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type_definition ::=
single_line_type_definition |
multi_line_type_definition

single_line_type_definition ::=
type
identifier
[ parameter_list ]
declared_identifier | qualified identifier
[ argument_list ]
semicolon_and_property_assignments | newline

multi_line_type_definition ::=
type
identifier
[ parameter_list ]
declared_identifier | qualified identifier
[ argument_list ]
functionality_body

parameter_list ::= ( parameters )

parameters ::= parameter { , parameter }

parameter ::= identifier [ = expression ]

Parameters in the parameter list might have default values, but parameters with the default values must prepend para-
meters without default values in the parameter list.

argument_list ::= ( arguments )

arguments ::= argument { , argument }

argument ::= [ declared_identifier = ] expression

Arguments in the argument list may be prepended with the parameter name. However, arguments with parameter
names must prepend arguments without parameter names in the argument list.

The below snippet presents examples of type definitions.

# Single line type definition
type cfg_t(w = 10) config; width = w; groups = "configs"

# Multi line type definition
type blk_t(with_status = true, mask_count) block

S [with_status]status
M [mask_count]mask

Main bus
type irq_t irq; groups = "irq"
I1 irq_t
I2 irq_t

C1 cfg_t
C2 cfg_t(6)
C3 cfg_t(width = 8)
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Blk1 blk_t(7)
Blk2 blk_t(with_status = false, mask_count = 11)

8.3. Type extending
The type extending allows extending any custom defined type, either by instantiation or by defining a new type.
This is mainly, but not only, useful when there are similar blocks with only slightly different set of functionalities.

Example:

type blk_common_t block
C1 config
M1 mask
S1 status

Main bus
Blk_C blk_common_t

C2 config
Blk_M blk_common_t

M2 mask
Blk_S blk_common_t

S2 status

This description is equivalent to the following description:

type blk_common_t block
C1 config
M1 mask
S1 status

type blk_C_t blk_common_t
C2 config

type blk_M_t blk_common_t
M2 mask

type blk_S_t blk_common_t
S2 status

Main bus
Blk_C blk_C_t
Blk_M blk_M_t
Blk_S blk_S_t

The type nesting has no depth limit. However, no property already set in one of the ancestor types can be overwrit-
ten. Also no symbol identifier defined in one of the ancestor types can be redefined.
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9. Scope and visibility

9.1. Import and package system
The FBDL has a concept of packages and allows importing packages into the file scope using the import statements.
A package consists of files with .fbd extension placed in the same directory. A package must have at least one file
and shall not be placed in more than a single directory. A package is uniquely identified by its path. The name of a
package is equivalent to the last part of its path. That is, it is the same as the name of the directory containing pack-
age files. However, if the package directory name starts with the "fbd-" prefix, then the prefix is not included in the
package name. For example, two packages with following paths foo/bar/uart and baz/zaz/fbd-uart
have exactly the same name uart.

A package can be imported in a single line using the single-line import statement or as a part of the multi-import
statement.

single_import_statement ::= import [ identifier ] string_literal

Examples of single import statement:

import "uart"
import spi "custom_spi"

multi_import_statement ::=
import newline
indent
[ identifier ] string_literal
{ [ identifier ] string_literal }
dedent

Example of multi import statement:

import
"uart"
spi "custom_spi"

The string literal is the path of the package. The path might not be complete, but shall be unambiguous. For exam-
ple, if two paths are visible by the import statement ("foo/bar/uart" and "baz/zaz/uart"), and both ends
with "uart", then "uart" path is ambiguous, but "bar/uart" and "zaz/uart" are not.

The optional identifier is an identifier that shall denote the imported package within the importing file. If the identi-
fier is omitted, then the implicit identifier for the package is the last part of its path.

9.1.1. Package discovery

Each FBDL compiler is required to carry out the package auto-discovery procedure. The procedure must obey fol-
lowing rules.

1) If the compiler working directory contains a directory named "fbd", then each of the "fbd" subdirectories is
considered a package directory if it contains at least one file with the ".fbd" extension. The name of the pack-
age is the same as the name of the subdirectory, unless it has "fbd-" prefix. In such a case, the prefix shall be
removed from the package name. If the name of the subdirectory matches exactly the "fbd-" pattern, then a
compiler must report an error on an invalid package name.

2) The compiler must recursively check all subdirectories of its working path (except the "fbd" directory in the
working directory that is described in rule number 1). Each subdirectory with a name starting with the "fbd-"
prefix is considered a package directory if it contains at least one file with the ".fbd" extension. If the name of
the subdirectory matches exactly the "fbd-" pattern, then a compiler must report an error on an invalid pack-
age name.
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3) The compiler must recursively check all subdirectories of the paths defined in the FBDPATH environment vari-
able. The variable may contain multiple paths separated by the ’:’ (colon) character. Each subdirectory with a
name starting with the "fbd-" prefix is considered a package directory if it contains at least one file with the
".fbd" extension. If the name of the subdirectory matches exactly the "fbd-" pattern, then a compiler must
report an error on an invalid package name.

Compilers are also free to have their own parameters allowing to provide extra paths to look for packages. The be-
low snippet presents a tree of example working directory.

|-- externals
| ‘-- bar
| |-- fbd-bar
| | ‘-- bar.fbd
| ‘-- gw
| ‘-- bar.vhd
|-- fbd
| |-- fbd-pkg1
| | ‘-- a.fbd
| |-- not-a-pkg
| | ‘-- c.txt
| ‘-- pkg2
| ‘-- b.fbd
|-- gw
| |-- modules
| | |-- a.vhd
| | ‘-- b.vhd
| ‘-- top.vhd
‘-- sw

‘-- foo.py

In this case each FBDL compilant compiler must automatically discover following three packages:

• bar - path "./externals/bar/fbd-bar",

• pkg1 - path "./fbd/fbd-pkg1",

• pkg2 - path "./fbd/pkg2".

9.2. Scope rules
The following elements define a new scope in the FBDL:

• package,

• type definition,

• functionality instantiation.

The following example presents all scopes.

const WIDTH = 16
const WIDTHx2 = WIDTH * 2
Main bus

width = WIDTH
const C20 = 20
Blk block

const C30 = 30
type cfg_t(WIDTH = WIDTH) config

atomic = false
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width = WIDTH
Cfg16 cfg_t
Cfg20 cfg_t(C20)
Cfg30 cfg_t(C30)

The WIDTH constant has package scope, and it is visible at the package level, in the Main bus instantiation and in
the Blk block instantiation. It would also be visible in the cfg_t type definition. However, the cfg_t type has
the parameter with the same name WIDTH. As a result, only the WIDTH parameter is visible within the type defini-
tion. The WIDTH parameter has a default value that equals 16. This is because at this point the name WIDTH de-
notes the package level WIDTH constant. Type parameters are visible inside the type definition, but not in the type
parameter list. The Cfg16 is thus a non-atomic config of width 16, the Cfg20 is a non-atomic config of width 20
and the Cfg30 is a non-atomic config of width 30.
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10. Grouping
Grouping is a feature of the FBDL used to inform a compiler that particular functionalities might be accessed to-
gether, and their register location must meet additional constraints. This is achieved using the groups property.
The following functionalities can be grouped: config, irq, mask, static, status. A functionality may
belong to multiple groups (except irq), and groups must be registerified in the order they appear in the group lists.
The following snippet presents three grouped configs.

Main bus
type cfg_t; width = 8; groups = ["group"]
A cfg_t
B cfg_t
C cfg_t

Any FBDL compliant compiler must place all three configs (A, B, C) in the same register.

10.1. Single register groups
The single register groups are groups of elements that fit a single register. The overall width of all functionalities is
not greater than the single register width. In such a case, all functionalities must be placed in the same register. The
specification does not impose any specific order of the functionalities within the register, and it is left to the compiler
implementation. The following listing presents an example bus description with three single register groups.

Main bus
C0 config; width = 16; groups = ["read_write_group"]
M0 mask; width = 15; groups = ["read_write_group"]

C1 config; width = 16; groups = ["mixed_group"]
S11 static; width = 8; groups = ["mixed_group"]
S12 status; width = 8; groups = ["mixed_group"]

S21 status; width = 4; groups = ["read_only_group"]
S22 status; width = 7; groups = ["read_only_group"]

All functionalities of the "read_write_group" can be both read and written. The code generated by a compiler
for the requester must provide means for reading/writing the whole group as well as for reading/writing particular
functionalities of the group.

The "mixed_group" contains functionality that can be read and written (C1), as well as functionalities that can
only be read (S11, S12). The code generated by a compiler for the requester must provide a means for reading all
readable functionalities and writing all writable functionalities. It is valid even if the group has single readable or
single writable functionality. The compiler must also generate means for reading/writing particular functionalities of
the group. In the case of "mixed_group" this will result in two means doing exactly the same (writing the C1
config). However, it is up to the user to decide which of the means should be used. If it makes sense, it is perfectly
valid to use both of them in different contexts.

All functionalities of the "read_only_group" are read-only. In this case, the compiler must generate a mean
only for reading the group.  It must also generate means for reading particular functionalities.

10.2. Multi register groups
The multi register groups are groups with functionalities that overall width is greater than the width of a single regis-
ter. The specification does not impose any order of functionalities or registers in such cases, and it is left to the com-
piler implementation. However, the compiler must not split functionalities narrower or equal to the register width
into multiple registers. This implies that any functionality with a width not greater than the register width is always
read or written using single read or write access. The following snippet presents a bus description with one multi
register group.
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Main bus
C config; width = 10; groups = ["group"]
M mask; width = 10; groups = ["group"]
SC static; width = 10; groups = ["group"]
SS status; width = 10; groups = ["group"]

The compiler must generate code for the requester allowing to write all writable functionalities of the group as well
as the code allowing reading all readable functionalities of the groups. It must also generate means for reading or
writing particular functionalities.

There are multiple ways to place functionalities from the above example into registers. The following snippet
presents one possible way.

Nth register              Nth + 1 register
----------------------------- ----------------------
|| C | M | SC | 2 bits gap ||  || SS | 22 bits gap ||
----------------------------- ----------------------

However, the above arrangement might not be optimal if there is a need to read both SC and SS at the same time as
it would require reading two registers not a single one. The below listing presents how to group elements within the
group using subgroups.

Main bus
C config; width = 10; groups = ["csubgroup", "group"]
M mask; width = 10; groups = ["csubgroup", "group"]
SC static; width = 10; groups = ["ssubgroup", "group"]
SS status; width = 10; groups = ["ssubgroup", "group"]

The set of possible functionalities placements within the registers is now limited as the groups are registerified in the
order they appear. The below snippet shows a possible arrangement.

Nth register              Nth + 1 register
------------------------- ---------------------------
|| C | M | 12 bits gap ||  || SC | SS | 12 bits gap ||
------------------------- ---------------------------

This time reading both SC and SS requires reading only one register, while reading the whole "group" still re-
quires reading two registers.

10.3. Array groups
The array groups are groups with all functionalities being arrays. The groups do not necessarily have the same num-
ber of elements.

The code generated by a compiler, for an array group, for the requester must provide a means for writing an arbitrary
number of elements for all writable functionalities starting from an arbitrary index. It must also provide a mean for
reading an arbitrary number of elements for all readable functionalities starting from an arbitrary index.

The specification does not define what happens on access to the elements with an index greater than the length of
some arrays. This is because some of the target languages support special data types indicating that the value is ab-
sent (for example, None - Python, Option - Rust), while others use for this purpose completely valid values (0 -
C, Go).

10.3.1. Single register array groups

The single register array groups are array groups with overall single elements width not greater than the width of a
single register. The below listing presents an example bus description with a single register array group.

Main bus
type cfg_t config; width = 8; groups = "group"
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A [1]cfg_t
B [2]cfg_t
C [3]cfg_t
D [3]status; width = 8; groups = "group"

In the case of a single register array group all elements with corresponding indices must be placed in the same regis-
ter. Elements with consecutive indexes must be placed in consecutive registers. The below snippet presents a possi-
ble arrangement of elements for the example bus.

Nth register
-------------------------------
|| D[0] | C[0] | B[0] | A[0] ||
-------------------------------

Nth + 1 register
-------------------------------------
|| D[1] | C[1] | B[1] | 8 bits gap ||
-------------------------------------

Nth + 2 register
-------------------------------
|| D[2] | C[2] | 16 bits gap ||
-------------------------------

10.3.2. Multi register array groups

The single register array groups are array groups with overall single elements width greater than the width of a sin-
gle register. The below listing presents an example bus description with a multi register array group.

Main bus
type cfg_t config; groups = "group"

A [1]cfg_t; width = 16
B [2]cfg_t; width = 12
C [2]cfg_t; width = 12

In the case of multi register array group all elements with corresponding indices must be placed in consecutive regis-
ters. Also all elements with consecutive indexes must be placed in consecutive registers. Such a requirement guar-
antees that block access can always be used. The below snippet presents possible arrangement of elements for the
example bus.

Nth register                Nth + 1 register
------------------------------ ------------------------
|| C[0] | B[0] | 8 bits gap ||   || A[0] | 16 bits gap ||
------------------------------ ------------------------

Nth + 2 register                 Nth + 3 register
------------------------------ ------------------------------
|| C[1] | B[1] | 8 bits gap ||   || C[2] | B[2] | 8 bits gap ||
------------------------------ ------------------------------

10.4. Mixed groups
The mixed groups are groups with both single functionalities and array functionalities. The below listing presents an
example bus description with a mixed group.

Main bus
C config; width = 10; groups = "group"
M mask; width = 7; groups = "group"
S status; width = 8; groups = "group"
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CA [3]config; width = 10; groups = "group"
SA [3]config; width = 12; groups = "group"

In case of mixed groups array functionalities shall be registerified as the first ones assuming a pure array group. Sin-
gle functionalities shall be later placed in the gaps created during array registerification. If there are no gaps, or gaps
are not wide enough, then all reamining single functionalities shall be registerified as single register group or multi
register group. If the gaps are wide enough to place single functionalities there, but for some reason it is not desired,
then subgroup can be defined to group single functionalities of the mixed group as the first ones. The below snippet
presents a possible arrangement of elements for the example bus.

Nth register                  Nth + 1 register
----------------------- ------------------------------------
|| CA[0] | SA[0] | C ||   || CA[1] | SA[1] | M | 3 bits gap ||
----------------------- ------------------------------------

Nth + 2 register
------------------------------------
|| CA[2] | SA[2] | S | 2 bits gap ||
------------------------------------

10.5. Virtual groups
Virtual groups are groups that name starts with the underscore (’_’), for example "_group". Virtual groups are
used to group functionalities without generating the group interface for the requester code.

10.6. Registerification order
Groups must be registerified in the order they appear in the groups lists. A compiler must issue an error if the order
of any groups is not the same in all groups lists. If the order is not unequivocal, then the compiler is free to choose
the order. However, as the registerification results have to be deterministic and reproducible for a particular com-
piler, the order criterion has to be fixed in case of ambiguous order of groups. The most natural criteria are proba-
bly:

• Alphabetical order. Groups with ambiguous order are sorted alphabetically before registerification.

• Occurrence order. Groups with ambiguous order are registerified in parsing order. For example, if the order of
groups "b" and "a" is ambiguous, and group "b" first occurrence is in line number 80, and group "a" first oc-
currence is in line number 120, then group "b" is registerified as the first one.

The order of groups might be used to prioritize the groups, so that access to some groups is more efficient than to the
other groups. The below listing serves as an example of groups order used for optimizing access to a particular
group.

Main bus
C1 config; width = 20; groups = ["a"]
C2 config; width = 12; groups = ["a", "b"]
C3 config; width = 20; groups = ["b"]

As group "a" has higher priority than group "b" (its index is lower in the groups list for functionality C2), access
to the group "a" will be more efficient, as functionalities C1 and C2 will be placed in the same register. A possible
arrangement is presented in the below snippet.

Nth register     Nth + 1 register
------------- ----------------------
|| C1 | C2 ||  || C3 | 12 bits gap ||
------------- ----------------------

If the order of the groups in the groups list for functionality C2 was reverse, then the access to the group "b" would
be more efficient. A possible arrangement of functionalities in such a case could look as follows.
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Nth register     Nth + 1 register
------------- ----------------------
|| C2 | C3 ||  || C1 | 12 bits gap ||
------------- ----------------------

The below listing presents a description of groups with ambiguous order.

Main bus
C1 config; width = 10; groups = ["a", "b", "c"]
C2 config; width = 10; groups = ["a", "d", "c"]
C3 config; width = 10; groups = ["a", "b"]
C4 config; width = 10; groups = ["a", "d"]

The order of groups "b" and "d" is not unequivocal. However, whether group "b" is registerified before the group
"d" is not even important in this case, as the optimal structure is determined by three facts:

• both groups "b" and "d" are subgroups of group "a",

• the intersection of groups "b" and "d" is an empty group,

• both groups "b" and "d" have higher priority than group "c".

Possible arrangement of the functionalities is presented in the below snippet.

Nth register              Nth + 1 register
-------------------------- --------------------------
|| C1 | C3 | 2 bits gap ||  || C2 | C4 | 2 bits gap ||
-------------------------- --------------------------

10.7. Irq groups
The irq groups are used for interrupt grouping. Grouped irqs have a common interrupt consumer signal. Each irq
must belong at most to one group and each irq group must have at least two irqs. Irqs belonging to the same group
might have different values of the producer trigger (in-trigger), but all of them must have the same value for the
consumer trigger (out-trigger). In the case of level-triggered interrupt consumer the information on the inter-
rupt source can be read from the interrupt group flag register.

The below snippet shows an example of an irq group for level-sensitive interrupt consumer.

Main bus
type irq_t irq; add-enable = true; groups = "IRQ"
IRQ0 irq_t
IRQ1 irq_t; clear = "On Read"
IRQ2 irq_t; in-trigger = "Edge"
IRQ3 irq_t; in-trigger = "Edge"; clear = "On Read"

The picture below presents a possible logical block diagram of the irq group with level trigger for the interrupt con-
sumer and enable register. The "Clear On Read" signal is driven on every Flag Register read. The "Explicit Clear"
signal must be driven when the requester calls a means for clearing given interrupt flags. Probably the easiest form
of the "Explicit Clear" implementation is clear on Flag Register write, where the clear bit-mask is the value of the
data bus. The Flag Register is to some extent a virtual register, as it has an address, but it does not have any storage
elements. The flag is stored in the interrupt producer in case of a level-triggered producer or in the Edge Detector in
case of an edge-triggered producer.
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10.8. Param and return groups
Param and return groups are used to group proc or stream parameters or returns. Such a kind of grouping may
be necessary for performance optimizations, as the requester may store parameters or returns in a single list or in
multiple distinct lists. Param and return groups help to avoid data reshuffling before or after the access. Param and
return groups are independent. The below snippet presents a valid description with a single proc with one param
and one return group.

Main bus
P proc

p1 param; groups = "grp"
p2 param; groups = "grp"
r1 return; groups = "grp"
r2 return; groups = "grp"

Param and return groups may contain subgroups. Single param or return can belong to groups which sum is empty
or is equal to one of the groups. The below snippet presents examples of two invalid and two valid parameters
grouping.

Main bus
# Param p2 belongs to group "b" and "c".
# However, neither "b" is subgroup of "c"
# nor "c" is subgroup of "b".
Invalid1 proc

p1 param; groups = ["a", "b"]
p2 param; groups = ["a", "b", "c"]
p3 param; groups = ["a", "c"]
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Invalid2 proc
p1 param; groups = "a"
p2 param; groups = ["a", "b"]
p3 param; groups = "b"

Valid1 proc
p1 param; groups = "a"
p2 param; groups = "a"
p3 param; groups = "b"
p4 param; groups = "b"

Valid2 proc
p1 param; groups = ["a", "b", "c"]
p2 param; groups = ["a", "b", "c"]
p3 param; groups = ["a", "b"]
p4 param; groups = "a"
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